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Abstract 

Innovative, high-technology industries are commonly described as drivers of regional 
development. ‘Tech’ workers earn high wages, but they are also said to generate 
knock-on effects throughout the local economies that host them, spurring growth in 
jobs and wages in nontradable activities. At the same time, in iconic high-tech 
agglomerations like the San Francisco Bay Area, the home of Silicon Valley, the 
success of the tech industry creates tensions, in part as living costs rise beyond the 
reach of many non-tech workers. Across a large sample of U.S. cities, this paper 
explores these issues systematically. Combining annual data on wages, employment 
and prices from the Quarterly Census of Employment and Wages, the Department of 
Housing and Urban Development and the Consumer Price Index, it estimates how 
growth in tradable tech employment affects the real, living-cost deflated wages of 
local workers in nontradable sectors. Results indicate that high-technology 
employment has significant, positive, but modest effects on the real wages of workers 
in nontradable sectors. These effects appear to be spread consistently across different 
kinds of nontradable activities. In terms of substantive wider impacts, tech appears 
benign, though fairly ineffectual. 
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1. Introduction 
In 2017, the online retailer Amazon announced it would build a second headquarters, dubbed 

HQ2, somewhere in North America. Policymakers throughout the US and Canada clamored to 

have their city chosen, reportedly wooing the company with offers of as much as $7bn in state 

and local tax breaks and other incentives (CNN Money, 2018).  Though the numbers involved 

are unusual, the contours of the story are not unique. Scholars widely hold that innovative, high-

technology industries drive regional development, and it is equally commonplace for 

policymakers to expend great effort to attract them to their localities (Clark, 1972; Duranton, 

2011). ‘Tech’ workers command high wages, and as such their presence contributes to regional 

prosperity. Above and beyond this direct effect, tech industries are thought to generate wider 

economic benefits in the local economies that host them. Durable employment growth in tech 

and other tradable sectors raises demand for local nontradable activities, such as health care, 

restaurants and dry cleaners. Higher demand for nontradables can be expressed through job 

creation as well as, potentially, higher pay. Since wages in tech are on average higher than in 

many other tradable industries, one might expect indirect benefits from tech to be comparatively 

large.  

 

Still, dark clouds hang over this sunny-seeming picture. Cities hosting larger concentrations of 

workers in tech and other skill-intensive activities have also witnessed faster growth in local 

prices (Shapiro, 2006; Florida 2017). Studies of the most iconic technology clusters in the U.S. 

highlight the deleterious effects of rising costs, especially housing, on workers whose jobs 

support tech and other traded sectors (Schafran, 2013; Hyra, 2015). Ganong and Shoag (2017) 

illustrate the point, observing that, while janitors working in New York City in 2010 earned 

nearly one third more in nominal pay than their counterparts in Deep South States, after adjusting 

for housing prices they earn six percent less. This raises questions about the narrative that tech 

employment generates outcomes that are “unambiguously positive” (Moretti and Thulin, 2013, 

p.343). They also confirm a need to measure not just job quantity but also quality (Feldman et 

al., 2016), the latter reflected in part by real (cost-adjusted) wages. 

 

Motivated by this debate, the present paper aims to better understand the links between tech and 

the economic welfare of workers in nontradable sectors – those sectors of the economy that are 
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primarily oriented towards local consumption. Ours is the first known paper that measures the 

effects of local employment changes in tradable high-technology activities on the real wages of 

workers in local nontradables. Using data on a large sample of U.S. metropolitan areas, we test 

three hypotheses. First and most generally, we test the hypothesis that permanent expansions in 

high technology employment raise the real wages of workers in local nontradables. Second, 

given the emphasis placed on tech as a uniquely important catalyst for regional development, we 

consider whether the indirect impacts of tech tradables are larger than those that flow from non-

tech tradable employment. Third, guided by anecdotes suggesting that tech workers 

disproportionately consume particular kinds of nontradables, especially wage-, skill- and 

creativity-intensive activities like fine dining, we seek to determine whether tech has a larger 

impact on activities that are rich in such characteristics.  

 

To test these hypotheses, we combine annual industry-data drawn from the U.S. Bureau of Labor 

Statistics’ (BLS) Quarterly Census of Employment and Wages (QCEW) with information on 

local prices from the Department of Housing and Urban Development (HUD) and the BLS’ 

Consumer Price Index for All Urban Consumers (CPI-U). Over a study period ranging from 

2001 to 2015, we estimate how annual changes in metropolitan tradable high-technology 

employment are associated with changes in the average real wages of workers in local 

nontradable sectors. We leverage the panel nature of our data to eliminate bias from time-

invariant unobserved city-specific factors as well as economy-wide dynamics. We aim to 

account for the effects of idiosyncratic shocks using two instruments: a shift-share measure of 

predicted tech employment (Bartik, 1991), and a measure of local patents per capita accumulated 

during the 19th century.  

 

We find stable and consistent evidence that growth in local tech employment augments the real 

wages earned by workers in nontradable sectors. However, the influence of tech is minor. Across 

a range of models with different controls and estimation strategies, we find that a ten percent 

increase in local tech employment raises the annual real wages of workers in nontradable 

activities by between 0.1 and 0.7 percent. With regard to the second hypothesis, we find that tech 

and non-tech tradable employment have roughly comparable impacts on nontradable real wages. 

Regarding our third hypothesis, we decompose the nontradable sector and find little 
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unambiguous evidence that growth of the tech sector engenders demand for highly paid 

nontradables.  Further, we find little clear support for the proposition that demand derived from 

growth in local tech employment is directed towards more ‘creative’ or ‘original’ nontradable 

activities, though we do find that workers in more skill-intensive nontradables reap moderately 

higher returns. We interpret these last pieces of evidence cautiously, recognizing that industrial 

categories may not offer sufficient differentiation across industries of interest.  

 

Taken together, the evidence we produce indicates that there are indeed wider benefits to be 

enjoyed from growth in a region’s high-technology employment, but that these benefits are likely 

to be small. Policy efforts aimed at boosting tech employment are not likely to powerfully 

augment the economic welfare of those working in local-serving nontradables. On the other 

hand, we find no support for the idea that tech industry growth systematically decreases these 

workers’ real wages. 

 

 

2. LITERATURE REVIEW 

Innovative, high-technology activities have long enjoyed a privileged position among researchers 

and policymakers concerned with economic development (Clark, 1972; Malecki, 1981; Scott and 

Storper, 1987; Duranton 2011; Howells, 2005; Block and Keller, 2009; Storper et al., 2015).  

Nonroutine high-technology activities tend to be strongly localized in space, as firms and 

workers congregate to match with each other and to efficiently produce and exchange tacit 

knowledge (Storper and Walker, 1989; Glaeser et al, 1992; Saxenian, 1994; Chatterji et al, 

2014).  

 

The increasing importance of high-technology goods and services has stimulated job growth in 

these industries, through the expansion of existing firms and the birth of new ventures. Growth in 

this sector can have direct and indirect effects on the localities that play host to it. First and most 

directly, it will expand the local employment base. And as workers in high-technology industries 

tend to be well paid, growth in tech employment is likely to increase local per capita incomes. 

Such direct income effects can be large. At the extreme, consider the tech boom of 1994-2000. 

Over this period, Galbraith and Hale (2004) document that the California counties of San Mateo, 
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Santa Clara and San Francisco (all in the San Francisco Bay Area that contains Silicon Valley), 

as well Washington’s King County (home to Microsoft and Amazon) together accounted for 

nearly all of the growth in between-county income inequality. 

 

The indirect effects of tech employment are subtler. To understand them, one must first 

distinguish between tradable and nontradable economic activity. Tradable goods are those 

produced to serve national, and potentially global markets, and as such face prices that are not 

defined locally. Many such activities are subject to internal or external increasing returns to scale 

in production, and consequently will tend towards a high degree of geographic concentration. 

Meanwhile, nontradable activities serve local needs and face local prices. As described in the 

introduction, these include goods and services like health care, dry cleaning, and restaurants. 

Nontradables comprise the majority of local employment; in the U.S. context, they are also 

responsible for the bulk of employment growth in recent years (Spence and Hlatshwayo, 2012).  

 

Using export-base theory and input-output methods, scholars have long considered that local 

tradable and nontradable employment are linked (North, 1955; Richardson, 1985). Moretti 

(2010) provides a theoretical update, describing a general equilibrium framework under which 

the national economy is comprised of a system of cities in which workers choose locations. Each 

city contains a mix of tradable and nontradable activities. A positive shock to local labor demand 

in the tradable sector stimulates demand for workers in nontradables. This will lead to new jobs 

for dry cleaners, medical technicians and chefs, as well as higher pay for workers in these 

sectors. As Moretti and Thulin (2013) outline, the extent to which expansions of the tradable 

sector produce job growth as opposed to wage growth in nontradables depends on the supply of 

housing in a location, as well as on potential migrants’ responsiveness to new opportunities. 

Locations facing strong constraints on housing supply will experience higher nominal wage 

growth and lower job creation. Meanwhile, all else equal, a greater elasticity of migration will tip 

the balance towards larger job multipliers and weaker upward pressure on wages (Hsieh and 

Moretti 2016). On the basis that high-productivity tech work produces a larger expansion in local 

income relative to other tradables, growth in tech ought to create especially large demand for 

nontradables. 
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There are some other reasons why workers in nontradable sectors will experience pay growth as 

a consequence of an expansion in tradable employment. One is that workers in tradables may 

generate knowledge externalities that spill over to workers in nontradables, making the latter 

more productive. These effects ought to be somewhat minor, in that, for a wide range of 

nontradable activities such as barbers, dry cleaners, and restaurants, proximity to software 

engineering and pharmaceutical development likely offers very modest potential for productivity 

enhancement. Baumol’s (1967) ‘cost disease’ represents another potential channel. Observing 

that the wages of workers in nontradable sectors like education have risen despite significant 

increases in productivity, Baumol suggests that pay must be indexed to rates of wage growth in 

productive sectors, as a means of ensuring that teachers do not defect to activities where 

productivity, and hence pay, are rising. To the extent that this mechanism is in operation, in the 

present context it is essential to note that not all workers are equally likely to switch to the 

productive sector. The average barber is less likely than a physics teacher to become a software 

engineer. 

 

Evidence tracing the wider impacts of tech tradable employment has been almost entirely 

focused on measuring job multipliers. A growing literature has documented the existence of 

multipliers flowing from various kinds of tradable activities in a range of countries (Moretti, 

2010; de Blasio and Menon, 2011; Moretti and Thulin, 2013; Fleming and Measham, 2014; van 

Dijk, 2016, 2018; Frocrain and Giraud, 2017). The classic finding from this literature comes 

from Moretti (2010), in which, using data for the 1980s and 1990s, he finds that the addition of 

one manufacturing job generates 1.6 local nontradable jobs, whereas a new job in high-

technology manufacturing generates nearly 5 local jobs in nontradable activities.  

 

Surprisingly, given renewed interest in this topic, there is nearly no evidence tracing the effects 

of tech or other tradable employment on nontradable wages. In the U.S. context, there is at least 

one strong reason to explore this channel: internal migration has slowed since 1980, a trend that 

cuts across a wide range of demographic features (Molloy et al, 2011). As a consequence, at least 

some of the pressure from rising demand ought to raise the nominal wages of workers in 

nontradable activities. Only a few studies exist that investigate how high-technology 

employment affects the wages of workers beyond tech. Echeverri‐Carroll and Ayala (2009) and 
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Lee and Rodriguez-Pose (2016) show that tech employment in U.S. metropolitan areas is 

associated with higher nominal wages for workers without college degrees; the latter also finds 

no association between tech and the share of local residents falling below the national poverty 

line. Studying the UK, Lee and Clarke (2017) show that tech employment is associated with 

growth in poorly paid jobs requiring relatively unskilled labor. A little more loosely related, 

Fowler and Kleit (2013) find ambiguous relationships between concentrations of tradable 

activity and the local incidence of poverty. 

 

No known work has captured how high-technology or other tradable activities affect the real 

wages for workers in local nontradable sectors. There are good reasons why this may be 

important. Longstanding patterns of interstate and inter-metropolitan income convergence more 

or less stopped after 1980 (Drennan et al, 1996; Giannone, 2017). While we lack consensus on 

the deep causal explanations for this shift, one proximate cause is a skill-biased sorting process, 

whereby higher- and lower-skilled workers are increasingly concentrating in different locations 

(Shapiro, 2006). Since 1980, high-skill workers are increasingly concentrated in high-

productivity, high-amenity locations, where the already-elevated cost of housing has increased 

more sharply than in locations with lower shares of college graduates (Diamond, 2016). While 

living costs in high-productivity locations reduce cost-blind estimates of national income 

inequality (Moretti, 2013), they also highlight the need to consider effects of high-technology 

employment on real, not nominal wages.  

 

This should come as little surprise to scholars and advocacy organizations long concerned with 

processes of gentrification, displacement and neighborhood change (National Urban Coalition, 

1978; Zuk et al, 2015). This methodologically varied field of research has documented how the 

renewed urbanization of skilled workers has generated winners and losers. A clear consensus 

indicates that the housing security of lower-income workers, many of whom work in the 

nontradable sector of the economy, can be precarious in the face of sudden changes in the nature 

of urban housing markets. Yet much of this work is ethnographic in nature, and as a consequence 

questions of generalizability remain underexplored.  
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These issues prompt the following two hypotheses: 

 

H1: A permanent expansion in high technology employment should raise the real wages of 

workers in local nontradable sectors. 

 

H2: Since the effects of tech employment on nontradable wages is through derived demand, 

and since tech wages are higher than other tradables, the effects of tech on nontradable 

wages should be large relative to that of other tradables. 

 

It is also possible that the wage effects of local tech expansions depend on the nature of 

nontradable activities. There is little formal theory and no known systematic evidence identifying 

specific kinds of nontradables favored by tech workers. It may be that consumption baskets of 

workers in tech resemble those in other activities. On the other hand, anecdotes abound linking 

tech to particular nontradables, for instance, fine dining, ‘third wave’ coffee shops like Blue 

Bottle and Bulletproof (Mashable, 2017), or the mindfulness on offer in Big Sur’s Esalen (New 

York Times, 2017) and other more prosaic outlets. While upholding skepticism about the 

generalizability of such anecdotes, in our third hypothesis we entertain the notion of possible 

biases in consumption among tech workers, specifically towards industries defined by higher 

wages, and or those marked by higher levels of skill, originality or creativity: 

 

H3: The effects of tech employment may vary according to the task and wage profile of 

specific subsectors of nontradable activity.  

  

In the next section, we describe our approach to answering these questions. 

 

 

3. EMPIRICAL APPROACH 

In order to evaluate the relationship between local employment in the high-technology sector and 

the real wages of workers in local nontradable sectors, we estimate the following regression 

equation: 
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where ln(RW) describes the log of real (local cost-deflated) wages of workers in nontradables, 

captured by the superscript NT, in city c and time t.1 The log of employment in high-tech 

tradable sectors is captured by ln(ET), and X’ is a vector of relevant time-varying city 

characteristics. µ is a city-specific fixed effect, whose purpose is to absorb bias from unobserved 

but relatively stationary local features, while η is a year fixed effect, included to capture time-

varying but economy-wide shocks, such as the Great Recession. The standard random error term 

is represented by ν . The key parameter to be estimated isβ1 , measuring the effect of high-

technology employment.  

 

Applying the fixed effects estimator, Equation 1 measures how the average annual real wages of 

workers in local nontradables respond to changes in the level of high-technology employment 

around them. It does so while accounting for major sources of spurious correlation that might 

otherwise bias estimates. However, estimates remain vulnerable to unobserved localized shocks 

that happen to be correlated with the level of high-technology employment, and that also shape 

real wages. For instance, consider a local government that enacts a law imposing a congestion 

tax on drivers. Workers’ commuting costs rise as a consequence, and some proportion of these 

costs get capitalized into wages (Timothy and Wheaton 2001). To the extent that this 

hypothetical location simultaneously experiences an expansion in their tech sector, estimates of 

the effects of tech on nontradable wages will be upwardly biased. To absorb bias from such 

idiosyncratic shocks we use instrumental variables. We consider two candidate instruments. The 

first is a dynamic ‘shift-share’ measure, common in labor and regional economics (i.e. Bartik, 

1991, Ottaviano and Peri, 2006). Our aim is to capture the exogenous component of local 

demand for high-technology sectors, as follows: 

 

/%,&
( = /%,&8-

( 1 +
		 /;<,&

( − /%,&
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1 Throughout the paper, we use terms like ‘city’, ‘region’ and ‘metropolitan area’ interchangeably to refer to 
metropolitan Core-Based Statistical Areas (CBSAs), which are defined by the Office of Management and Budget to 
reflect economic integration. 
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where EUS denotes national employment levels, and all other variables remain as above. Equation 

2 arrives at the ‘expected’ level of local high-tech employment in period t by multiplying initial 

local tech tradable employment by the national growth rate for employment in the sector between 

t-1 and t. Because national growth rates include the region in question, and could therefore be 

driven by them, we follow Faggio and Overman (2014) in subtracting local employment from 

national employment.  

To grasp the intuition behind our instrument, consider two cities that are differently specialized 

in high-technology activities in 2001. As high-technology employment grows in all other 

locations in the country, the city with a deeper initial tech specialization will experience 

proportionately more growth in ‘expected’ tech employment. Assuming that a nontrivial 

proportion of the drivers of local high-technology employment are not location-specific, this 

instrument should predict the key independent variable of interest sufficiently strongly. And by 

using purely non-local changes, we argue that Equation 2 will not capture the influence of 

location-specific shocks that might otherwise generate biased estimates.  

Nonetheless, shift-share instruments can be ineffective at identifying short-run causal effects 

when levels (in this case, of tech employment) are relatively stable over time (Jaeger et al., 

2018). Since this is potentially an issue in our context, we consider a second class of instruments 

that leverage historical patent information. Based on underlying data from Petralia et al., (2016), 

we generate city-specific measures of the total number of patents between 1836 and 1900 

divided by the population in thousands in the nearest Decennial Census (1850 to 1900). Our 

logic for this measure is that deep historical innovations might predict current levels of frontier 

technological activity, but are not likely to otherwise shape nontradable real wages. Exploration 

of these measures shows patterns of cities that only weakly resemble today’s larger, more 

expensive, and famously tech-centric regional economies; interspersed with Seattle and Denver 

are Duluth WI, Rockford IL, and Rochester NY. A city’s level of 19th century patents per 

thousand is only weakly correlated with both the share of its workers with at least 4 years of 

college in 2015 (r= 0.28), and median rents (r=0.26). Since our patent instruments are not 

dynamic over our study period, this instrument must be used in pooled cross sections. 

Consequently, for these to be informative an additional assumption to be satisfied is that cross-
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sectional and panel estimates are sufficiently comparable. 

To investigate our third hypothesis, testing whether tech workers have different consumption 

patterns, we adapt Equation 1 to consider disaggregated subsectors of local nontradables. We 

adopt two methods. First, we exploit wage variation between subsectors, using Powell’s (2016) 

quantile estimator with nonadditive fixed effects. Unlike a typical regression, which measures 

the relationship of interest for nontradable industries at the mean real wage, this procedure 

allows us to report results for industries at different quantiles of the conditional distribution of 

real wages across nontradables, while maintaining the benefits of within-CBSA variation in 

order to eliminate bias from stationary unobserved heterogeneity. Second, we consider how the 

relationship of interest might vary due to differences in the task content of each nontradable 

sector. The estimating equation, which includes a linear interaction term between tech 

employment and task intensity, is as follows:  

!" #$%&
'(> = *+ + *-!"(/%&

( ) +	*? !"(/%&
( ) ∗ AB

'(> + 12%&
3 + 4% + 5& + 6%& (3) 

 

where CDE indexes among subsets of nontradable industries and AB describes a measure of the 

intensity with which detailed industry i requires task type x. To the extent that *? is statistically 

significant, it suggests that the relationship between tech employment and real wages in a 

particular nontradable sector depends on that sector’s task content. 

 

4. DATA AND MEASUREMENT 

Our primary data comes from the QCEW. QCEW is built from State-submitted Unemployment 

Insurance (UI) records, which are then linked in order to provide a time series of employment 

and wages. Since QCEW provides information on the universe of workers covered by State UI 

programs, as well as Federal employees, its coverage is relatively comprehensive, capturing 

more than 90 percent of workers in the country. Compared to alternative data sources, QCEW 

offers additional advantages. One is that, unlike public-use samples of the Decennial Census and 

American Community Survey, the data completely identify local areas. This means estimates 

relying on this data ought to be considerably more reliable. Furthermore, since the data are not 
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self-reported, they ought to be higher quality than those found in population Census data.  

For a given industry and location, the level of coverage in QCEW is determined by 

confidentiality policy, which seeks to ensure that reported data cannot be used to identify 

information on firms and individuals. Confidentiality issues arise in jurisdictions with a small 

number of employers in a given industrial classification. Since we focus on 4-digit NAICS 

sectors, and relatively densely populated metropolitan regions, our dataset covers in excess of 

90% of the population of total employment in our industries of interest. Although QCEW data 

are available from 1975 to the present, we confine our analysis to the period 2001-2015, since 

annual data for certain control variables is missing prior to 2000.  

The scale of interest in this study is the metropolitan regional scale, defined in terms of economic 

rather than administrative integration. We mainly use definitions for metropolitan Core-Based 

Statistical Areas (CBSAs), put forth by the Office of Management and Budget (OMB). A 

metropolitan CBSA is an area containing at least one core urban center with at least 50,000 

residents around which are arrayed adjacent communities that are strongly economically and 

socially integrated to the core. As we explain below, in some models we use a broader regional 

definition, Combined Statistical Areas (CSAs), which combine adjacent (and meaningfully 

integrated) metro- and micropolitan CBSAs. Defining the region more broadly limits the detail 

of the data we can employ in our statistical analysis, but it does help us to avoid potential omitted 

variable bias, which might occur by excluding workers who may commute to a job from outside 

of a given CBSA.  

 
 
4.1 Distinguishing Tradable and Nontradable Industries 

In order to capture the effects of tradable high-technology employment on the wages of workers 

in nontradable sectors, we must first distinguish tradable from nontradable industries. One key 

distinction between the two is their spatial presence. Every town needs dry cleaners and offices 

of general practitioners. By contrast, the manufacture of car engines could occur in a very limited 

number of locales and still satisfy a much wider geographic scope of demand. This intuition has 

been operationalized as a means of identifying the distinction between tradable and nontradable 

activities. Following common practice (ie Krugman, 1991; Jensen and Kletzer, 2010, Eliasson et 
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al., 2012; Spence and Hlatshwayo, 2012), we measure the level of geographical concentration of 

each industry using a locational Gini coefficient, given by the following formula: 

 

FG =
/%

/;<
−
/%,G

/;<,G

?

%
 

(3) 

 

where E equals the level of employment in city c for a given industry j. Based on this index, an 

industry which is geographically dispersed would have a Gini coefficient closer to 0, whereas 

one more concentrated would have a value closer to 1.2 We estimate Gini coefficients using 4-

digit NAICS industries, using industry employment data from 2015.34 The median level of 

industry concentration in 2015 is of 0.015. At the tails, Ginis effectively distinguish tradables 

from nontradables. As one might expect, however, in the middle these distinctions are less clear. 

To maximize the validity of our categorization scheme, we manually examine the ranking of 

industries and categorize industries in the middle whose Gini values do not correspond to 

expectations regarding tradability.5  

 

4.2 Identifying High-Technology Industries 

To identify high-technology tradables, we adopt a framework proposed by Hecker (2005) that 

implements guidance from the BLS. The BLS approach considers both input and output 

dimensions, capturing the intensity of scientific, technical and engineering occupations; R&D 

employment; advanced-technology products; and the use of high-technology production 

methods.  We use the strictest of three thresholds defined by Hecker (2005). Under this scheme, 

tech industries are those in which technology-oriented occupations are present at five times the 

overall economy-wide average – at least 24.7 percent of total industry employment.6  

                                                
2 As with Jensen and Kletzer (2010), we opt not to adjust measures for the possibility that concentration reflects the 
presence of a very small number of large plants. Because our interest is in measuring tradability, not agglomeration, 
concentration in any form is equally relevant. 
3 Comparing Ginis produced for 2015 to those built using data from 2002, we confirm that our results are not driven 
by the year selected. 
4 We exclude workers in NAICS 92 (Public Administration) 
5 Fuller details of the approach are found in the data appendix at the end of this paper. 
6 Our definition contrasts with somewhat that taken of some closely related studies. For instance, Lee and 
Rodriguez-Pose (2016) include all three levels described by Hecker (2005), and is thus much more inclusive. This 
looser threshold includes many manufacturing industries that may involve technological products and processes, but 
that host workers less engaged in high-wage nonroutine work. Average wage levels are distinctly higher in our Level 
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4.3 Measuring Real Wages 

Since living costs vary strongly across regions, nominal incomes as well as incomes deflated 

using a national consumer price index (CPI) may fail to measure inter-regional differences in 

economic welfare. Our local CPI measure combines location-specific rents information with 

national non-housing prices. To measure housing prices, for each county we use HUD data to 

calculate the average of 50th percentile rents for two- and three-bedroom dwellings, which we 

sum to the CBSA level weighting by population. Non-housing components are drawn from the 

CPI-U, as are annual measures of component weights. Local CPI is calculated as follows: 

 
 

HIJK%,& = L&
M NOPQR"S%,& + L&

'M CO"ℎOPQR"S  (4) 
 
 

where w measures the relative importance in year t by the CPI program to either housing (H) or 

nonhousing (NH) components of the CPI-U.7 We use our annual LCPI measures as deflators for 

QCEW-derived annual incomes for workers in nontradable sectors. Hence, we arrive at their real 

wages as follows: 

 
 

#$%,&
'( =

C$%,&
'(

HIJK%,&
 

(5) 

 
 

4.5 Capturing task intensity 

We capture differences between disaggregated components of local nontradable activities in two 

ways. First, we consider industry-specific variation in average wages. Second, we use data 

describing how industries vary in terms of their occupational makeup, and how different 

                                                
1 industries than Levels 2 and 3. We believe our stricter threshold is more appropriate given the underlying theory 
we seek to test. On the other hand, we are more, or differently inclusive than Moretti (2010), who considers only 
components of high-tech industries that involve manufacturing activities, ignoring design, data processing and other 
industries that form an important component of contemporary high-technology activity in the U.S. A list of 
industries classified as high-technology is provided in the Data Appendix. 
7 Historical relative component weights of the CPI-U can be obtained from the BLS, using December as the 
reference month in each year. 
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occupations require different kinds of tasks. Industry-specific data on national occupational 

structure comes from BLS’ Occupational Employment Statistics program. Job-specific task 

information is drawn from the Department of Labor’s O*NET database. From the large battery 

of job characteristics available from O*NET, we select four of particular interest: creativity, 

originality, innovation, and schooling requirements. We use O*NET information quantifying the 

occupation-specific importance of each characteristic. Combining this with the OES data, for 

each characteristic, we calculate the weighted sum of all occupations’ scores, where the weight is 

the share of total industry employment represented by a particular occupation.  

 

4.6 Main control variables 

We include two dynamic control variables in all specifications. First, we measure the year- and 

region-specific unemployment rate, expressed as a percentage, using data from the BLS Local 

Area Unemployment Program. High levels of unemployment could put downward pressure on 

nominal wages as well as on the housing market. Second, using data from one percent extracts 

from the American Community Survey, drawn from IPUMS (Ruggles et al, 2015), we measure 

the share of non-institutional, actively employed workers over the age of 25 with at least a 4-year 

degree. Because metro-level identifiers in the ACS are not available between 2001 and 2004, we 

use geometric interpolation to impute educational attainment during these years. Though the 

existing literature is unclear on whether educational spillovers of the type reported in studies like 

Rauch (1993) and Moretti (2004) extend to workers in nontradable sectors, we include this 

measure to ensure that measures of the relationship between tech employment and nontradable 

wages are not driven instead by productivity spillovers from the presence of highly-educated 

workers. In certain models, we also include the minimum wage prevalent in each metro area, 

which might also influence the wages of nontradable workers. In the U.S., the minimum wage is 

mostly determined by either the federal or state governments – with many states legislating for 

minimum wage levels beyond the federal figure. Minimum wage data are available from the U.S. 

Department of Labor. While some local governments set minimum wage levels higher than the 

state or federal figure, local action is highly infrequent, and since CBSAs are our unit of analysis, 

we use the federal or state level that is relevant to the majority of communities within a given 

metro area.  
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5. RESULTS 

5.1 Descriptive Results  

Table 2 presents descriptive statistics for key variables in the 349 metropolitan CBSAs that 

constitute the primary analytical sample, with values presented for the year 2015. The average 

urban worker in nontradable activities earns around $36,000 in nominal terms, and $26,000 in 

real terms. The average metro CBSA hosts around 14,000 workers in tradable high-technology 

activities, and 18,000 jobs in non-high-technology tradables. Over the period, which includes the 

Great Recession, local unemployment rates averaged less than six percent, and about 17 percent 

of adult workers had attended at least four years of college.  

 
 
Table 2. Summary Statistics for Key Variables of Interest in Metropolitan CBSAs in 2015 

Variable  Mean Standard 
Deviation 

Nominal wages for workers in nontradable sectors ($) 35,842 6,278 
Real wages for workers in nontradable sectors ($) 25,959 3,706 
High-technology tradable employment 16,284 48,658 
Non-high-technology tradable employment  21,512 61,773 
Unemployment rate (%) 5.49 1.96 
Workers over 25 years old with at least 4 years of College (%) 17.16 4.62 
Median Rent for 2 and 3 Bedroom Dwelling 1,050 263 
Minimum wage 7.80 0.71 

 Note: Authors’ calculations based on data described in Section 4. All variables measured over 349 metropolitan  CBSAs. 
 
 
The measure of dispersion indicates considerable variation across cities, especially in terms of 

employment in tradable activities. This makes sense given the relatively heterogeneous nature of 

the metro CBSA category: although it has a minimum population threshold, it contains cities like 

New York and Los Angeles, with populations well over ten million inhabitants, as well as 

Hinesville, Georgia, with just over 80,000 residents. Similarly, metropolitan areas hosting the 

largest agglomerations of high-technology activity, like San Jose, Los Angeles, and New York 

employ an order of magnitude more workers in such activities than the average city.  

 
 
Crucially for our purposes, over our study period there is also meaningful temporal variation 

within cities. The median city expands its high-technology employment base by just over ten 

percent, and the interquartile range spans seven percent to an increase of just over 50 percent. 

More concretely, the average city added 1,000 new tech jobs, while a few larger metropolitan 
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areas, notably Seattle, San Francisco and Houston, added tens of thousands of new tech jobs, and 

Los Angeles, Miami and Philadelphia fall considerably short of their boom-era peaks in the early 

2000s.  

 
 
 
5.2 What is the relationship between local high-technology employment and the real wages of 

workers in nontradable sectors? 

 

We now turn to estimating the main relationship of interest. The analysis is chiefly conducted on 

a panel of cities, using two estimators: heteroscedasticity-robust ordinary least squares (OLS), 

and subsequently, robust two-stage least squares (2SLS). In each model, city fixed effects 

account for stationary unobserved heterogeneity among regional economies.8 Year fixed effects 

are included to capture unmeasured shocks that are uniform across cities, but which vary over 

time.  The independent variable of interest is local high-technology employment. Because we are 

interested in capturing the effects of relatively permanent changes in this variable, throughout 

our analysis we use 3-year moving averages of tech employment, centered on the current year. 

Where possible, we include measures of unemployment and the proportion of workers with at 

least four years of college education as controls.  Both the dependent variable and key 

independent variable are measured in log form, minimizing scale issues.  To facilitate the use of 

the historical patenting instrument, in certain models we pool observations across years; in such 

cases city fixed effects are not included.  

 

The first hypothesis to be tested states that changes in local high-technology employment raise 

the real wages of workers in nontradable sectors. Evidence is shown in Table 3. To begin, in 

Model 1 we describe the relationship between tech employment and raw, nominal wages. The 

coefficient on tech employment is positive and statistically significant at a 1 percent. In all 

subsequent models, the dependent variable is real wages for workers in nontradables. Model 2 

presents estimates in which tech employment is the only predictor. The coefficient on tech 

                                                
8 While a Hausman specification test indicated that a random effects model generated more efficient estimates of the 
relationship of interest, actual differences between each estimated coefficient in fixed versus random effects models 
was substantively negligible. This together with the strong need to account for the potential effects of unobserved 
heterogeneity push for the fixed effects approach described in Equation 1. 
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employment remains positive and statistically significant at a 1 percent level. Although the point 

estimate is actually slightly larger than that for nominal wages, their 95 percent confidence 

intervals overlap. Model 3 presents our baseline estimate of the relationship of interest. As in the 

prior models, the coefficient on tech employment remains positive and statistically significant. 

Its magnitude suggests that a ten percent increase in local high-technology employment is 

associated with a little over a 0.1 percent increase in the annual real wages of workers in 

nontradable sectors. In other words, though significant in statistical terms, our baseline estimate 

reveals a substantively modest relationship between tech employment and nontradable real 

wages. In terms of its relationship to estimates for nominal wages, as above there is a large 

degree of overlap between the two confidence intervals, suggesting that price changes in local 

living costs do not play a decisive role in shaping the real wages of workers in nontradables 

across the full range of metropolitan CBSAs. Coefficients on control variables in the baseline 

model are broadly as expected, with the lack of significance of the college share variable 

suggesting there is not a clear social return to education spilling over to workers in nontradables.  

Based on the possibility that average nontradable wages may be affected by changes in the 

minimum wage, Model 4 adds a measure of local minimum wages. These do not enter 

significantly in this model, and the main coefficient of interest remains unchanged.  

 

In Model 5 we test the possibility that our estimate of the relationship of interest is driven by 

Baumol’s cost disease, instead of by derived-demand explanations that form the primary basis of 

the hypotheses. To do so, we drop those nontradable activities that have been mainly associated 

with cost disease measurement: those involved in education, the arts and health care.9  To the 

extent that results excluding these sectors remain consistent, it suggests that cost-disease 

mechanisms are not the primary drivers of the links between tech and nontradable wages. 

Although, counter-intuitively, the coefficient on tech employment in this model is somewhat 

larger than that generated for the full complement of nontradables; it remains positive, 

significant, and substantively small. These results support the derived-demand channel. 

 

                                                
9 Specifically, we disinclude all 4-digit NAICS sectors within NAICS 61 (Education services), and 62 (Health care 
and social assistance), as well as 7111 (Performing arts companies), 7115 (Independent artists, writers, and 
performers), and 8122 (Death care services). 
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Table 3. The relationship between high-technology employment and the wages of workers in nontradable industries, 2001-2015 
 Panel 2001-2015  Pooled 2001-2015 
 Nominal 

Wages 
No 

controls 
Baseline Baseline + 

Min Wage 
No Baumol 

Sectors 
CSAs & 
CBSAs 

2SLS  
FE 

 OLS 2SLS 

 (1) (2) (3) (4) (5) (6) (7)  (8) (9) 
            
Tech tradable employment 0.011*** 0.017*** 0.013*** 0.013*** 0.024*** 0.013** 0.041**  0.050*** 0.078*** 
 (0.003) (0.003) (0.003) (0.003) (0.003) (0.005) (0.015)  (0.001) (0.003) 
Unemployment rate -0.009***  -0.013*** -0.013*** -0.016***  -0.013***  -0.015*** -0.019*** 
 (0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001) (0.001) 
College share 0.000  0.000 0.000 0.000  -0.000  -0.011*** -0.018*** 
 (0.001)  (0.001) (0.001) (0.001)  (0.001)  (0.001) (0.001) 
Minimum wage    0.002       

    (0.002)       
           

First Stage Results           
    Expected tech empl.       0.013***    
          (0.002)    
   Patents (per thousand pop)          0.029*** 

          (0.002) 
City effects Yes Yes Yes Yes Yes Yes Yes  No No 
Kleibergen-Paap rk Wald F       41.36   122.50 
R-squared 0.976 0.928 0.931 0.931 0.943 0.884 -  0.374 - 
N 4,108 4,108 4,108 4,108 4,108 3,207 3,763  3,637 3,637  

Note: * p<0.05, ** p<0.01, *** p<0.001. Heteroscedasticity-robust standard errors in parentheses. Year effects included in all models. The unit of observation is 
metropolitan CBSAs except in Model 4, which replaces CBSAs with CSAs where they exist. Dependent variable in all models except Mode1 1 is real wages for 
workers in nontradable sectors. ‘College share’ refers to the share of the working population with at least 4 years of college education. Further variable details 
described in Section 4. 
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In Model 6, we consider an alternative geographical unit of analysis. On the intuition that 

workers in nontradable sectors might be priced out of metropolitan areas into adjacent, more 

peripheral and presumably more affordable ‘micropolitan’ CBSAs, we re-estimate our baseline 

model defining regional economies according to OMB definitions for Combined Statistical 

Areas (CSAs), where available, and otherwise using metropolitan CBSAs. A perfect analogue of 

the baseline model is not possible in this sample, given the inability to measure control variables 

in micropolitan areas. Nonetheless, we can compare estimates for tech employment between this 

model and a CBSA-only model that is similarly parsimonious (Model 2). These models produce 

results that closely resemble one another. In short, our findings are robust to an alternative 

geography where the borders of local labor markets are drawn more extensively. 

 

To account for potential bias from unobserved shocks to localities, Model 7 instruments for high-

tech employment using the shift-share measure described in Equation 2, using the 2SLS 

estimator with heteroscedasticity-robust standard errors. The instrument passes tests of under- 

and weak-identification. Second-stage results closely resemble those reported for the baseline 

model (Model 3), although the IV-derived point estimate and confidence interval are larger. The 

overall consistency across IV and OLS results provides evidence to support the notion that 

localized unobserved shocks are not driving the relationship of interest. Since the instrument 

used in Model 3 strips away location-specific unobserved factors, we are left with an estimate 

whose causal significance is clearer: it suggests that expansions in local tech employment exert 

an independent, positive effect on the real wages of workers in nontradable sectors.  

 

To further strengthen confidence in the causal nature of the relationship, we turn to our 

instrument measuring CBSA-specific 19th century patenting activity. Whereas the shift-share 

instrument aims to provide exogenous variation by abstracting away from the individual 

location, our aim with the patent instrument is to find place-specific variation that is plausibly 

uncorrelated with unobserved factors that explain real wages over the study period – a minimum 

of one hundred and one years later. As described above, one limitation of this instrument is that 

it is not dynamic. Hence, we must first determine the extent to which we find generally 
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consistent results across models with and without locational fixed effects, the former of which 

depend on our exploitation of the panel structure of our data.  Model 8 estimates a version of 

Equation 1 in which information is pooled across all years of the data, and in which city and year 

fixed effects are not included. While the coefficient on tech employment is somewhat larger in 

models in which these fixed effects are present, results remain broadly consistent. This 

encourages our use of the patent instrument. Model 9 present 2SLS estimates, instrumenting for 

tech employment with total CBSA patents between 1836 and 1900, scaled per thousand 

population. The instrument passes tests of under- and weak-identification, and second-stage 

results hew reasonably closely to those generated in the uninstrumented model. These results 

broadly support the findings thus far, suggesting that the estimates are not biased by unobserved 

location-specific shocks.10 

 

 

 

5.3 Is high-technology employment special? 

Next we consider the second hypothesis: the extent to which tech has a unique relationship with 

nontradable real wages when compared with other tradable activities. In 2015, the average 

worker in tech activities earned 42 percent more than their counterpart in non-tech tradables. 

This premium is consistent across the full study period. Consequently, one might expect larger 

benefits for workers in nontradable sectors flowing from tech as opposed to non-tech tradables. 

To explore whether this is the case, we include non-tech tradable employment as an additional 

predictor.  

 

 

Figure 1. Average marginal effects with 95% confidence interval of one log point increase in 
local high-technology employment on log annual real wages of workers in nontradable sectors, 
2001-2015  
                                                
10 We conduct some additional robustness checks not shown in Table 3. To explore whether results depend on our 
use of 3-year moving averages for both our dependent variable and our key independent variable, we also estimate 
models using unadjusted single-year values. These results are materially consistent with those we report in the 
paper. Given that there are a handful of regions whose levels and growth in tech employment over the study period 
are quite different from the average, we also explore the robustness of our results to the exclusion of these outliers. 
We estimate a succession of models in which San Jose, San Francisco, Seattle, Los Angeles, as well as all possible 
combinations of these regions are removed from the analytical sample. Their inclusion does not fundamentally 
shape estimates of the relationship of interest.  
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Note: Each model presents coefficient and 95% confidence interval describing the relationship between high 
technology employment and the nominal or real wages of workers in nontradable sectors. Models estimated on 
2001-2015 panel of metropolitan CBSAs. Each model includes city and year fixed effects, and additionally contains 
controls for unemployment and the share of workers with at least 4 years of college education. Estimates with CIs 
that cross the zero mark are not statistically significant at a 5% level. N for Models 1 & 2=4,108; Full regression 
results available upon request. 
 

 

Figure 1 reports coefficients for ‘horse-race’ style models including both tech and non-tech 

tradables as predictors. Models include the typical controls, as well as city and year fixed effects. 

In Model 1, the coefficient on tech employment remains the same as that estimated in the 

baseline model. However, counter to our intuition, in Model 1 we find statistically 

indistinguishable coefficients for tech and non-tech tradable employment.  On the intuition that 

this outcome might be driven by small number of very high-paying but nonetheless non-

technological industries – in particular finance and insurance – in Figure 1, Model 2 we measure 

non-tech tradables without 4-digit industries falling into these categories.11  Having done so, the 

coefficient on tech employment grows larger than that estimated for the restricted group of non-

tech tradables. While this finding hews closer to expectations, estimates for tech and non-tech 

                                                
11 Specifically, we disinclude NAICS 5222, 5231, 5232, 5239 and 5259 and put these in our indeterminate category. 

Log Tech Tradable Employment

Log Non-Tech Tradable Employment

Log Tech Tradable Employment

Log Non-Tech Tradable Employment

0 .01 .02 .03
Log Wages for Workers in Nontradable Sectors

Model 1: All Non-Tech tradables

Model 2: All but Finance and Insurance
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employment remain surprisingly similar. Given the average wage gap between tech and non-tech 

tradables, the lack of a substantial gap in terms of effects on nontradable real wages remains a 

puzzle. 

 

 

5.4 Do the effects of tech employment vary according to the task and wage profile of specific 

subsectors of nontradable activity? 

 

Our third hypothesis is that the links between tech employment and aggregate nontradable real 

wages may conceal meaningful internal heterogeneity that we may see only by disaggregating 

each city’s bundle of nontradables. Lacking unambiguous theoretical guidance, we consider the 

idea that tech employment might spur greater growth in demand for nontradable activities that 

are more highly-remunerated, as well as those intensive in creativity and skill. To explore the 

possibility that the effect of tech will vary according to the level of wages paid in particular 

nontradable sectors, we make use of a quantile estimator with nonadditive fixed effects, 

optimizing with Markov Chain Monte Carlo (MCMC) methods.  

 

Figure 2 presents results across the conditional distribution of nontradable real wages. Point 

estimates vary between approximately 0.008 (at the fifth and 75th percentiles) to nearly 0.04.  

These differences are not large in substantive terms, however a considerable amount of overlap 

across 95 percent confidence intervals indicates that actual population parameters also do not  

vary across quantiles. Based on this, we reject the idea that workers in nontradable sectors at 

different positions in the distribution of real wages reap meaningfully different rewards from 

growth in local tech employment. 
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Figure 2. Marginal effects of high-tech employment on quantile QT  of nontradable wage 
distribution, 2001-2015.  

 
Note: Each quantile shows a point estimate and 95% confidence interval for high-technology employment at a point 
in the conditional distribution. Quantiles estimated in separate models, which include education, unemployment, 
year, and CBSA fixed effects, with robust standard errors. Estimates produced on a panel of 4-digit nontradable 
sectors in 349 metropolitan CBSAs. Estimates with CIs that cross the zero mark are not statistically significant at a 
5% level. N= 403,642; Full regression results available upon request. 
 

 

 

Next we examine differences in job characteristics. The idea we wish to explore is that the 

effects of changes in tech employment on nontradables depends on the job characteristics 

involved in a particular nontradable industry. Table 4 presents results in which we interact local 

tech employment with industry-specific measures of creativity, originality, innovativeness, and 

schooling requirements. Estimates in Table 4 include city and year effects. Standard errors are 

clustered at the CBSA-level, on the basis that wage-setting ought to be non-independent across 

sectors within a regional economy.  
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Table 4. The relationship between high-technology employment and the real wages of workers in 
nontradable industries by job characteristics, 2001-2015       

 Creativity Originality Innovativeness Schooling Requirements 
 (1) (2) (3) (4) 
     
Tech Tradable Employment 0.014 0.027 0.011 -0.011 
 (0.012) (0.015) (0.014) (0.008) 
Tech * Creativity -0.006    
 (0.023)    
Tech * Originality  -0.043   
  (0.036)   
Tech * Innovativeness   0.001  
   (0.027)  
Tech * Schooling Requirements    0.086** 
    (0.028) 
Non-tech Tradable Employment 0.008* 0.008* 0.008* 0.008* 
 (0.004) (0.004) (0.004) (0.004) 
Unemployment Rate -0.011*** -0.011*** -0.011*** -0.011*** 
 (0.001) (0.001) (0.001) (0.001) 
College Share -0.000 -0.000 -0.000 -0.000 
 (0.001) (0.001) (0.001) (0.001) 
     
R-squared 0.955 0.955 0.955 0.955 
N 393,504 393,504 393,504 393,504 

Note: * p<0.05, ** p<0.01, *** p<0.001. Robust standard errors, clustered at CBSA level, in parentheses. Year 
effects included in all models. The unit of observation is a CBSA-specific 4-digit nontradable sector. Dependent 
variable in all models is real wages. ‘College share’ refers to the share of the working population with at least 4 
years of college education. Further variable details described in Section 4.     
  
 

In Table 4, Models 1-3, the interaction terms between tech and creativity, originality and 

innovativeness are not significant, indicating that the effect of tech employment do not vary 

across different levels of these characteristics. Model 4, featuring an interaction with schooling 

requirements is significant at a five percent level. Figure 3 visualizes the relationship for the 10th, 

50th and 90th percentiles of schooling requirements.  The figure suggests that the rewards from 

rising tech employment rise with schooling requirements in nontradable industries. Nonetheless, 

substantive magnitudes remain small, with values indistinguishable from zero for those at the 

10th percentile of schooling requirements, ranging to a 0.2 percent increase in real wages in 

response to a ten percent increase in tech employment in sectors where schooling requirements 

are at the 90th percentile. To build some confidence that these differentiated results are not 

explained by cost-disease mechanisms, we re-estimate the schooling interaction for the range of 

nontradables except for nontradables in education, health care, and the arts, as in Section 5.2. 

The interaction term remains significant, remains substantively comparable. 



 

 25 

 
Figure 3. The relationship between high-technology employment and the real wages of workers 
in nontradable industries by levels of schooling requirements, 2001-2015    
   

 
Note: This figure visualizes the relationship described in Table 4, Model 16. Estimates produced using robust 
standard errors, clustered at CBSA level. College share, unemployment city and year effects included in model. The 
unit of observation is a CBSA-specific 4-digit nontradable sector. Further variable details described in Section 4. 
     
 
 
 
6. CONCLUSION 
This paper set out to explore the relationship between local high-technology employment and the 

real wages of workers in nontradable sectors. Scholars have long considered the direct impacts of 

high-technology and other kinds of specialization on regional economic performance. Others 

have examined indirect, wider effects, but this work has largely concentrated on job creation as 

an outcome, despite recent theory identifying mechanisms through which tradable jobs can affect 

local nontradable wages. This paper contributes to recent efforts to explore this channel 

empirically. It does so in several ways, most importantly by considering how employment 

growth in tech might shape not only nominal wages, but wages adjusted for local living costs.  
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Based on the estimation approach, data, and comprehensive coverage, this paper offers the 

clearest available evidence linking high-technology employment to the economic welfare of 

workers in nontradables activities. Our results show that, for the average metropolitan area in the 

United States, growth in tech employment offers statistically significant but substantively modest 

real wage benefits for workers in nontradables. We find that a ten percent increase in tech 

employment –the median over our study period – is associated with between a 0.1 and 0.7 

percent increase in nontradable real wages. This size of the relationship we document does not 

strongly depend on the distinction between nominal and real wages. One way to interpret this 

finding is that the interactions in iconic tech hubs between tech and strongly inelastic housing 

markets is not the universal, or even majority urban tech experience. Moreover, we find that the 

relationship between tech employment and nontradable real wages is not unique; despite 

differences in average wages it differs only moderately from that measured for not-tech 

tradables. Finally, we find that changes in tech employment have fairly consistent real wage 

effects across the spectrum of local nontradable work. We identify scant substantive variation 

across wage quantiles. Moreover, though we find that real wage gains rise modestly with 

schooling requirements, they are not larger in nontradable industries that more intensively 

require creativity, originality or innovativeness.   

 

A few limitations are worth discussing. One factor limiting our ability to measure the 

relationship of interest is the granularity of available industry codes. To give an example, 

restaurants are grouped into a single 4-digit industry, called ‘Restaurants and other eating 

places’. To the extent that tech workers favor particular fine dining over fast food, researchers 

face few options. Data on occupations may offer greater promise, but even here granularity is an 

issue, especially if one also requires time series and detailed geography. The ideal scenario 

would be one which permitted analysts to follow individuals across time, with detailed 

information about their industry, occupation, and wages. One important but unanswered question 

such data could address is the distribution of gains among migrants and locals. At this time such 

data are not available for the U.S. A further caveat has to do with our instrumental variables 

strategy. The evidence we report should generate some confidence that the links between tech 

employment and nontradable wages are causal, but caution is warranted, given the possibility 

that our instruments are not fully orthogonal to unobserved factors. One promising 
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complementary approach would be to leverage natural experiments. Major shocks to tech 

employment, of the kind represented by Amazon’s HQ2, for instance, could be matched to cities 

that bid unsuccessfully in order to glean treatment effects. Finally, the paper leaves unanswered 

why it is that tech and non-tech tradables generate broadly comparable real wage effects, despite 

differences in average salaries. Future research should pursue this question further.  

 

It is also worth briefly identifying possible effects that lie outside the boundaries of the present 

study. There remain other channels through which tech employment might improve the welfare 

of other workers. Perhaps chief among these is taxation, of individuals, business profits and 

property. Tax collected from these sources can improve public finances at multiple scales, and 

has the potential to generate greater provision of public goods, like schools, roads, hospitals. 

Future research should carefully examine this relationship. At the same time, rising tech 

employment might still generate real negative externalities that remain unmeasured in our study, 

for instance associated with being displaced from one’s longstanding community.  

 

Finally, to the extent that wider prosperity is an important desired outcome of tech-focused 

industry-attraction policies, this study offers cautionary evidence. When weighed against large 

subsidies offered to high-technology firms, the modest effects identified in this study suggest that 

such policies are misguided.  
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A. Data Appendix 
The following section provides further detail on the construction of our analytical dataset, 

detailing how we distinguish between tradable and nontradable activity; the identification of 

high-technology industries; and our measurement of local living costs. 

 
 

A1. Distinguishing tradable from nontradable industries 
As described in section 4.1, primary distinctions between tradable and nontradable activities are 

made using a locational Gini coefficient.  Table A1 presents the lowest- and highest-scoring 

industries, offering the opportunity to check these results against intuition. As is evident, the 

least geographically concentrated sectors are largely nontradable retail, while the most 

concentrated represent evidently tradable sectors, mainly those that are dependent on first-nature 

resource allocations that are geographically uneven. The most concentrated and least 

concentrated thirds of the distribution of Gini coefficients by sector conforms to basic intuition, 

with manufacturing sectors being amongst the most geographically concentrated sectors and 

retail sectors amongst the least.   

 

Distinctions in the middle of the distribution, however, are less clear, with tradable activities 

sitting cheek-by-jowl with nontradables and a handful of ambiguous cases. To maximize the 

validity of our categorization scheme, we manually examine the ranking of industries and 

identify ones whose Gini values do not correspond to expectations regarding tradability. For 

instance, NAICS 4851 Urban Transit Systems receives a Gini coefficient that places it in the 

immediate neighborhood of tradable sectors like Lime and Gypsum Product Manufacturing 

(NAICS 3274). And yet, while urban transit sustains tourism, we believe it is chiefly a locally-

consumed service. In clear cases such as these, we follow our intuition regarding industry 

classification.  We additionally flag 18 varieties of wholesale activities, which receive a very 

wide array of Gini values. Unclear on their tradability, we remove these from our analytical 

dataset.12 Out of a total of 302 industries, these procedures leave us with 149 activities that we 

define as tradable, and 135 sectors defined as nontradable.  

 
 
                                                
12 A full list of classified industries is available from the authors upon request. We experimented with including 
wholesaling industries as either nontradables or as non-tech tradables and found comparable regression results.  
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Table A1. Most- and least-geographically concentrated industries according to Locational Gini 
coefficients, 2015. 

Rank NAICS Industry Name Gini 
1 4821 Rail Transportation 0.9756 
2 4879 Scenic and Sightseeing Transportation, Other 0.7323 
3 3122 Tobacco Manufacturing 0.6918 
4 4861 Pipeline Transportation of Crude Oil 0.6576 
5 1132 Forest Nurseries and Gathering of Forest Products 0.6528 
⋮    

299 8111 Automotive Repair and Maintenance 0.0006 
300 4422 Home Furnishings Stores 0.0006 
301 6211 Offices of Physicians 0.0005 
302 4451 Grocery Stores 0.0005 
303 6212 Offices of Dentists 0.0002 

Note: Authors’ calculations of Gini coefficients based on 4-digit QCEW data for 2015. A full list of classified industries is 
available from the authors upon request. 
 
 
 
A2. Identifying high-technology industries 
As described in section 4.2, we use BLS guidance on what constitutes high-technology activities, 
using the strictest of the criteria adopted. Table A2 provides a list of these industries, along with 
annual wages in 2015. 
 
Table A2. Level 1 High-Technology Industries 

NAICS Industry Wages 
(2015) 

3254 Pharmaceutical and medicine manufacturing  $123,811 
3341 Computer and peripheral equipment manufacturing  164,648 
3342 Communications equipment manufacturing  104,034 
3344 Semiconductor and other electronic component manufacturing  100,161 
3345 Navigational, measuring, electromedical, and control instruments manufacturing  96,558 
3364 Aerospace product and parts manufacturing  96,795 
5112 Software publishers  147,045 
5179 Other telecommunications  88,624 
5191 Other information services  166,765 
5182 Data processing, hosting, and related services  98,616 
5413 Architectural, engineering, and related services  86,405 
5415 Computer systems design and related services  106,613 
5417 Scientific research-and-development services  129,553 

Note: Information drawn from Hecker (2005), Table 1. The table has been updated to reflect 2015 annual wages using data from 
QCEW. Hecker originally defines high-technology activities as including NAICS codes 5161, Internet Publishing and 
broadcasting and 5181, Internet service providers and Web search portals. In 2007, the Census Bureau merged these categories 
into code 5191, ‘Other information services,’ a category which is predominantly made up of 5-digit NAICS code 51913, Internet 
Publishing and Broadcasting and Web Search Portals.  
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A3. Nominal and Real Incomes 

Recent efforts have been made to construct consumer price indices that reflect subnational 
differences. Moretti (2013) constructs two such measures, one capturing local differences in the 
cost of housing, the other additionally reflecting local variation in nonhousing costs. Meanwhile, 
the Federal government has released Regional Price Parities that cover housing and non-housing 
components for 38 large metropolitan areas in selected years (Bureau of Economic Analysis, 
2016). Given the less-than-comprehensive nature of the latter, and given broad consistency 
across approaches reported in Moretti (2013), we opt to mimic the simpler of Moretti’s methods 
to estimate our own annual local consumer price indices. According to the BLS methodology, 
‘housing’ includes direct costs like rent, but also indirect expenditures on heating and other 
utilities. It is the largest single component of the national Consumer Price Index for All Urban 
Consumers (CPI-U), representing approximately 40 percent of the total expenditures. On this 
basis, and because housing markets are much more localized than, say, markets for food and 
clothing, we allow the price of housing to vary from one locality to the next, while our 
accounting of non-housing costs is derived from the national CPI-U. To account for the role of 
housing in consumer expenditures, we follow common practice in using rental information rather 
than the prices faced by home buyers. Home prices combine the value of a consumption good, as 
well as future investment expectations. As such, it is less suitable than rents in capturing the 
actual use-value of housing (Poole et al, 2005).  


