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Abstract

This paper discusses meanings of intra-generational mobility when variables take

values corresponding to either unordered or ordered categories. We propose concepts of

maximum and minimum mobility, along with mobility-inducing transformations and

related desirable properties. Then we axiomatically characterize indices of individual

mobility and social mobility. Our first set of concepts, properties and indices, mea-

sures mobility as diversity, unpredictability or instability in people’s status along the

accounting period. This notion of mobility is relevant and applicable to both nominal

and ordinal variables. Our second set measures mobility as average distance traveled

across categories from one period to the next. This latter notion is only relevant for ordi-

nal variables. We apply these indices to measure the extent of mobility in the responses

to subjective wellbeing questions in the United Kingdom, using the British Household

Panel Survey.
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1 Introduction

The study of fluctuations (and stability) in socioeconomic outcomes has long been of inter-

est in the social sciences, often under the name of intra-generational economic mobility.

Fields and Ok (1996) discuss several concepts of this form of mobility. Most of them ap-

ply to two-period analyses, in which several topics of interest include decomposition into

structural and exchange components (e.g. Ruiz-Castillo, 2004, van Kerm, 2004), as well

as the "pro-poor" nature of a growth experience (e.g. see review by Deutsch and Silber,

2011). Meanwhile, the literature on mobility over several periods has been concerned

mainly with the notion of mobility as an equalizer of lifetime incomes (e.g. Shorrocks,

1978a, Maasoumi and Zandvakili, 1986, Tsui, 2009, Fields, 2010). This literature deals

with continuous variables.

The setting of two-period mobility with ordinal variables has also been developed exten-

sively, especially using transition matrices (e.g. Prais, 1955, Shorrocks, 1978b, Sommers and Conlisk,

1979, Bartholomew, 1982, Dardanoni, 1995, Van de Gaer, Schokkaert, and Martinez, 2001,

Parker and Rougier, 2001). In contrast, mobility with nominal and ordinal variables in a

multiple-period framework has not been explored yet. However some interesting ques-

tions are worth tackling in this context. For instance, how stable over time are people’s

expressions of life satisfaction (measured by ordinal indicators) or lifetime voting patterns

(measured by nominal variables)? To what extent are these affected by life shocks, or con-

ditioned by more stable socioeconomic and demographic characteristics? With datasets

like the British Household Panel Survey answering these questions is now possible.

This paper discusses meanings of intra-generational mobility when variables take val-

ues that are either unordered or ordered categories. We first propose a concept of mobil-

ity as diversity, unpredictability and/or instability in people’s status over the accounting

period. This notion of mobility is relevant and applicable to both nominal and ordinal

variables. For this notion, we propose sensible benchmarks of maximum and minimum

mobility, along with mobility-inducing transformations and related desirable properties.

Then we axiomatically characterize indices of individual mobility, and social mobility, for

this particular meaning. It turns out that the individual mobility indices are consistent

with a mobility quasi-ordering that is, essentially, a Lorenz quasi-ordering mapping from

discrete probability distributions.

Our concept and measures of mobility as diversity, instability or unpredictability is

similar to the notion of mobility as unpredictability put forward by Parker and Rougier

(2001). The main difference between the two concepts (and related indices) is that ours fo-

cuses on observing individuals over several periods and our measures evaluate individual

mobility experiences, with the option of aggregating these individual mobility measures

into a social measure at a latter stage. By contrast, the concept of Parker and Rougier

(2001) is based on two-period transition matrices and skips the individual evaluation

stage.

As a second contribution, we also propose a concept of ordinal individual mobility as

average distance traveled across categories between adjacent periods. This notion is only

relevant for ordinal variables measuring people’s status (e.g. subjective wellbeing). Like-
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wise we propose corresponding benchmarks of maximum and minimum ordinal mobility,

together with ordinal-mobility-inducing transformations and related desirable properties.

The we axiomatically characterize indices of individual ordinal mobility, from which social

indices can also be constructed, reflecting this particular meaning.

Our concept and measures of ordinal mobility is also similar to the notion of mobility

as movement described by Van de Gaer et al. (2001). In particular, it is similar in how it

is expressed using a transition-matrix index by Bartholomew (1982), which weights the

absolute value of the gaps between the departure and destination categories (measured

with assigned natural numbers) by the corresponding transition probabilities, thereby be-

ing sensitive to the average distance traveled between categories from one period to the

next. Again, the main difference between our concept and those similar to it, is that we

focus on individual observations over several periods, with the option of aggregating their

individual mobility measures into a social measure later on. In contrast, the concept of

mobility as movement as captured by the Bartholomew index among others, is based on

two-period transition matrices and implicitly skips the individual evaluation stage.

We apply these concepts and indices in order to measure the extent of mobility as

instability, as well mobility as movement, in a multiple-period setting, using responses to

subjective wellbeing questions in the United Kingdom using the British Household Panel

Survey. In particular, we study socioeconomic covariates of individual mobility indices,

with a special concern for potential explanatory factors behind both low mobility and high

mobility values. Are these extreme values explainable by socioeconomic variables, or do

they rather reflect survey response errors? We find that individuals who experience low

mobility in their life satisfaction are educated and well-off, most often female, married, in

good health, and with an insignificant incidence of any unemployment spells. Meanwhile,

individuals with high mobility in life satisfaction, on the other hand, are almost always

male, single and young, with low levels of education and income, and often ill.

The paper is organized as follows. In Section 2 we set the framework for conceptual-

ising and measuring multiple-period mobility as instability or unpredictability. Section

3 provides our proposal for conceptualising and measuring multiple-mobility with specif-

ically ordinal variables. In Section 5 we illustrate the use of these measures with an

empirical study of life satisfaction responses from the British Household Panel Survey.

Section 6 concludes.

2 Multiple-period mobility as unpredictability

2.1 Preliminaries and notation

Let xnt be the value of a categorical (ordered or unordered) variable x for individual n in

period t, such that xnt ∈ [1, S] ⊂ N+. The variable is observed for N individuals across T

time periods. The unobserved individual probability that xnt = i in any time period is:

pn(i) ≡ Pr[xnt = i]. In practice, the probability that xnt = i is estimated according to the

following formula:
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p̂n(i) ≡
1

T

T

∑
t=1

I(xnt = i) (1)

We also define the discrete probability distribution of x for individual n, an S-dimensional

vector, as: Pn ∶= [pn(1), pn(2), ..., pn(S)]. An analogue definition applies to the estimated

probability distribution, P̂n.

2.2 Mobility benchmarks and transformations

When we observe an unordered categorical variable for each individual during several

time periods we can ask: how stable is the individual’s experience according to the vari-

able? Does the individual always report the same value? Or, on the other extreme, is

the individual likely to report any possible value from one period to the next in such a

way that in each period the immediate future value of the variable is unpredictable? We

can also pose these questions on instability and/or unpredictability of responses to ordinal

variables.

For example, figure 1 shows the response patterns of individuals "A" and "B" to a job

occupation question with six answer categories, over five years. Individual "A" always

answers category "2", whereas individual "B" answers different categories in every year.

Clearly, the pattern of "A" is stable, and highly predictable. By contrast "B" exhibits a

highly unstable pattern, difficult to predict. Hence, arguably, an interesting question is

to what extent can these different patterns be explained by fluctuations (or lack thereof)

in the events of individuals’ lives. When surveying subjective wellbeing we may also be

interested in knowing whether the extreme cases, in particular, (e.g. those of "A" or "B")

reflect appraisals of actual life experiences or bad respondent behaviour.

In this context, we introduce the following two extreme situations, or benchmarks, of

mobility understood as diversity (of outcomes), unpredictability or instability:

Definition 1. Minimum mobility: An individual experiences minimum mobility if ∃i ∈

[1, S] ∣ pn(i) = 1.

According to definition 1, minimum mobility occurs when an individual always reports

the same value of x.

Definition 2. Maximum mobility: An individual exhibits maximum mobility if pn(j) =
1

S
∀j ∈ [1, S].

According to definition 2, maximum mobility (understood as diversity/instability/unpredictability)

occurs when the individual probability distribution of x is uniform. Note that these two ex-

tremes would conform with the benchmarks of best and worst predictability of outcomes in

the following setting: Imagine we have computed P̂n by observing the responses of n over

T time points and we want to use these data to predict the value of xnt in period T + 1. If

we could only make statements like: "we think that xn,T+1 = i", then our best guess would

be to choose the i for which pn(i) is the highest. Then the probability of making a wrong
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Figure 1: Responses to a categorical question across time: Two individual

examples

guess despite our best effort would be 1−pn(i). Clearly, under minimum mobility our guess

would be failsafe correct. On the other extreme, it is easy to realize that the probability of

being wrong in this setting, despite the best possible prediction, is maximized if and only

if maximum mobility holds.1

Since we are considering mobility as instability, unpredictability, or diversity, we can

order probability distributions in terms of their degree of mobility, using the concepts of

the inequality literature, in particular uniform majorization (Marshall, Olkin, and Arnold,

2010) and the traditional Pigou-Dalton transfer, but applied to the domain of discrete prob-

ability distributions. We also define the following mobility orderings: the strong mobility

ordering ≻, such that PX ≻ PY reads "distribution X is more mobile than distribution Y ".

The weak mobility ordering ⪰, such that PX ⪰ PY reads "distribution X is at least as mobile

as distribution Y ". Finally the indifference mobility ordering ∼ such that PX ∼ PY reads

"distributions X and Y are equally (im)mobile". Then we define a probability Pigou-Dalton

transfer:

Definition 3. Consider probabilities pn(i) and pn(j), such that pn(i) > pn(j). A probability

Pigou-Dalton transfer (PPD) is a rank-preserving transfer of probability mass δ from the

1Admittedly, we could also base our prediction on different rules. For example, we could study the time

trend and see if, for instance, only over the last few time points the individual has been repeating values.

Then we could predict that in T +1 the individual will report the most recent values. But this level of analysis

would require looking for structural breaks in the trend, and the like. In this first part of the paper, we are

proposing a more straightforward assessment of mobility with categorical variables in which the degree of

mobility is related to the proportions of time spent in each category, irrespective of the actual trajectory. By

contrast, in the second part, when we introduce our concept of individual ordinal mobility, path dependence of

responses will be a key feature.
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greater to the lower probability, that is: pn(i) − δ ⩾ pn(j) + δ.

We consider that a PPD should strictly increase mobility as diversity/instability, i.e. if

distribution Y is obtained from distribution X by a PPD then: PY ≻ PX . More generally,

we define a uniform majorization:

Definition 4. Distribution Y is obtained from a uniform majorization of X if PY = BPX

where B is a bi-stochastic matrix.

We consider that a uniform majorization should not decrease mobility as diversity, i.e.

if distribution Y is obtained from distribution X by a uniform majorization then: PX ≺ PY .

Now note the following two details. First, we say that a uniform majorization should

not decrease mobility instead of asserting that it increases mobility strictly. This is because

the domain of bi-stochastic matrices admits matrices whose elements are only either ones

or zeroes, i.e. the identity matrix and its permutations. When multiplied by any of these

matrices, the probabilities of X are not changed. At best they are reshuffled. In such

circumstances we do not consider mobility as diversity to have increased. Second, as is well

known, any PPD can be implemented via a uniform majorization, choosing the appropriate

bi-stochastic matrix.

2.3 Individual mobility indices

We define an individual mobility index: Mn ∶ Pn ⊂ R
S
+ → [0,1] ⊂ R. We consider indices

which are twice continuously differentiable across the whole domain. The individual mo-

bility index should fulfill the following desirable properties:

Axiom 1. Maximum mobility: Mn = 1 if and only if the individual exhibits maximum

mobility.

Axiom 2. Minimum mobility: Mn = 0 if and only if the individual exhibits minimum

mobility.

Axiom 3. Sensitivity to PPD: If Y is obtained from X by PPD, thenMY >MX .

Axiom 4. Sensitivity to uniform majorization: If Y is obtained from X by uniform ma-

jorization, thenMY ⩾MX .

Considering these axioms, we identify a class of individual mobility indices fulfilling

them, according to proposition 1:2

Proposition 1. The twice continuously differentiable individual mobility index for mul-

tiple periods and categorical variables, Mn, fulfills the above four axioms (1, 2, 3, and

4) if and only if it is an additively separable, symmetric, and concave function mapping

from discrete probability distributions, and it is normalized so thatMn = 1 only whenever

pn(1) = pn(2) = ... = pn(S) (maximum mobility) and Mn = 0 only whenever ∃i∣pn(i) = 1

(minimum mobility).

2Note that fulfillment of axiom 4 implies fulfillment of axiom 3. Likewise, one can show that the two

situations of maximum and minimum mobility are the only ones consistent with axiom 3.
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Proof. See Appendix C. ∎

Examples ofMn fulfilling the above axioms include:

Mn = 1 −
1

S ∑
S
i=1[Spn(i)]

α − 1

Sα−1 − 1
∀α > 1 (2)

Mn = 1 −
1

2(S − 1)

S

∑
i=1

S

∑
j=1

∣pn(i) − pn(j)∣ (3)

Note that the index in 3 is a Gini index mapping from the discrete probability dis-

tribution. Therefore we can similarly devise other indices with so-called rank-dependent

functional forms. Meanwhile, the indices in 2 are basically members of a generalized en-

tropy family which also map from the probability vector (instead of incomes, etc.); i.e.,

examples of equally available rank-independent measures. Interestingly, when α = 2 in 2,

thenMn is a function of the Simpson index:

Mn =
S

S − 1

S

∑
i=1

pn(i)[1 − pn(i)] (4)

2.4 Quasi-orderings

Clearly, several indices fulfill the above axioms (1, 2, 3, and 4), while the orderings of

individuals produced by each of them may not always coincide. This is a situation akin

to that encountered in inequality measurement and other distributional fields. However,

given the similarities between traditional inequality measurement and the mobility-as-

diversity measurement proposed in this section, we can also identify situations in which

individual mobility rankings will be robust to any choice of reasonable mobility index.

This quasi-ordering applies to discrete probability distributions for variables with the same

number of categories, and can be derived using probability Lorenz curves, Ln(i) ∶ [0,1]S →

[0,1] which are defined the following way:

Definition 5. Ln(i) = ∑i
j=1 rn(j), i ∈ [1, S], where the probabilities, rn, are the probabilities

pn ranked from the lowest to the highest value (so that for instance, rn(1) =min[pn(1), pn(2), ..., pn(S)]

).

The quasi-ordering relies on the following proposition:

Proposition 2. MX > MY for any mobility index of the form Mn fulfilling the axioms 3

and 4 if and only if LX(i) ⩾ LY (i) ∀i ∈ [1, S] and ∃j ∈ [1, S]∣LX(j) > LY (j).

Proof. See Appendix C. ∎

Finally, consider X and Y in proposition 2, and let X be characterized by maximum mo-

bility, while Y exhibits strictly less than maximum mobility. Then if we plot both probabil-

ity Lorenz curves, we will find that LX(i) ⩾ LY (i) ∀i ∈ [1, S] and ∃j ∈ [1, S]∣LX(j) > LY (j).

ThereforeMX >MY for any mobility index satisfying the transfer properties and for any

Y not characterized by maximum mobility (with X showing maximum mobility). Now
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let Y be characterized by minimum mobility, while X exhibits strictly more than mini-

mum mobility. Then, again, if we plot both probability Lorenz curves, we will find that

LX(i) ⩾ LY (i) ∀i ∈ [1, S] and ∃j ∈ [1, S]∣LX(j) > LY (j), which leads toMX > MY for any

mobility index satisfying the transfer properties and for any X not characterized by mini-

mum mobility (with Y showing minimum mobility). Hence, mobility indices satisfying the

transfer properties always yield extreme values corresponding to these two benchmark

situations and only to them.

This detail is important, among other things, in order to rule out the suitability of

other indices of ordinal variation for our purpose of measuring multiple-period mobility

with the meaning of instability/unpredictability. For instance, take the Index of Ordinal

Variation (IOV) by Berry and Mielke (1992). The IOV’s minimum value coincides with a

situation of no ordinal inequality, which in our context occurs only when there is minimum

mobility. However the IOV’s maximum value is attributed to a situation where half the

population is in the bottom category and the other half is in the top category, where the

categories correspond to an ordinal variable. By contrast, such a situation would not co-

incide with our notion of maximum mobility because one could induce further mobility by

performing PPD transfers between the extreme categories and the intermediate (initially

empty) categories. In other words, the IOV does not fulfill our transfer axioms; therefore

it is not useful as a measure of mobility in terms of multiple-period instability. Other in-

dices from the growing literature on ordinal inequality (see Abul Naga and Yalcin, 2010,

Apouey and Silber, 2013, Lv, Wang, and Xu, 2015, for some recent examples) face the same

problem. Unfortunately, as shown below, these indices are not useful for the measurement

of multi-period mobility as average traveled distance either.

2.5 Normalization issues when the time period is small relative to the

number of categories

The above indices work well in theory. However in practice we need to compute the proba-

bilities in 1 from the data. The situations of minimum mobility are easy to spot empirically

as they only require one probability to be equal to one. By contrast, when the time period is

short, the appearance of the probability distribution under a situation of maximum mobil-

ity depends on the relationship between S and T . Then, for any chosen individual mobility

index, the maximum value varies accordingly. Therefore when the time period is short,

mobility indices should be adjusted according to the following formula:

An =
Mn −minMn

maxMn −minMn

(5)

When the time period is relatively short, there are three cases of maximum mobility:

Case 1. If T ⩽ S: pn(i) = 1

T
∀i ∈ [1, T ] and pn(i) = 0 ∀i ∈ [T + 1, S].

Case 2. If T > S and T = λS where λ ∈ N++: pn(i) = 1

S
∀i ∈ [1, S].

Case 3. If T > S and T = λS + R where λ,R ∈ N+ and R < S: pn(i) = λ+1
T
∀i ∈ [1,R] and

pn(i) = λ
T
∀i ∈ [R + 1, S].
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Consider, for example, the adjustment to the individual mobility index based on the

Simpson index, as in 4:

Case 1: An =
T

T − 1

S

∑
i=1

pn(i)[1 − pn(i)] (6)

Case 2: An =
S

S − 1

S

∑
i=1

pn(i)[1 − pn(i)] (7)

Case 3: An =
T 2∑S

i=1 pn(i)[1 − pn(i)]
R[T − 2λ − 1] + Sλ[T − λ]

(8)

Now consider the adjustment to the individual mobility index based on the Gini index,

as in 3:

Case 1: An =
S − 1
T − 1

−
1

2(T − 1)

S

∑
i=1

S

∑
j=1

∣pn(i) − pn(j)∣ (9)

Case 2: An = 1 −
1

2(S − 1)

S

∑
i=1

S

∑
j=1

∣pn(i) − pn(j)∣ (10)

Case 3: An =
T (S − 1) − T

2
∑S

i=1∑
S
j=1 ∣pn(i) − pn(j)∣

T (S − 1) −R(S −R)
(11)

3 Multiple-period mobility as average distance traveled across

categories

3.1 Preliminaries and notation

For the assessment of mobility as average traveled distance we, firstly, define the normal-

ized "distance" transited by individual n between periods t and t − 1 by: dnt =
∣xnt−xn,t−1∣

S−1 .

The statistic dnt measures the number of categories "jumped" between the two periods as

a proportion of the maximum transit possible, i.e. moving from one extreme category to

the other one (S − 1). We also define the vector of all distances traveled across transitions:

Dn ∶= (dn2, dn3, ..., dnT ).

3.2 A concept of individual mobility specifically for ordinal variables

With an ordinal variable for each individual over several time points we can ask again:

how stable is the individual’s experience according to the variable? Does the individual

always exhibit the same value? However, unlike the case of unordered categories, the

unpredictability situation does not seem to be the only appropriate or useful benchmark

of maximum mobility, because now the order of the categories provides us with a limited

notion of distance. Hence we could posit, for example, that someone who is constantly

moving between bottom and top categories exhibits more mobility than someone who visits

any category randomly (yielding a uniform distribution), since the latter person will be, on

average, "travelling" a shorter distance.
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Figure 2: Responses to an ordinal question across time: Three individual

examples

For example, figure 2 shows the response patterns of individuals "A", "B", and "C" to

a life satisfaction question with six categories as possible answers, over five time points.

Individual "A" always answers category "2", whereas individual "B" answers different cat-

egories in every year, and individual "C" answers either the lowest or the highest category

roughly evenly. While the pattern of "A" is stable, and "B" exhibits a highly unstable pat-

tern which is difficult to predict, "C" shows a pattern whose predictability lies somewhere

between "A" and "B", but manifests a higher average movement across categories between

any given pair of consecutive years. As before, it is interesting to learn the extent to which

these different patterns can be explained by similar fluctuations (or lack thereof) in the

events of individuals’ lives; including whether the extreme cases reflect appraisals of life

experiences or bad respondent behaviour.

3.3 The problem with using ordinal inequality measurement to opera-

tionalise the notion of individual multiple-period mobility with or-

dinal variables

With the above in mind, we reinstate definition 1 as our benchmark for minimum mobility

as movement across ordered categories (i.e. an individual exhibits minimum mobility as

movement by staying in the same position throughout).

Just as we borrowed from the traditional inequality literature in order to measure indi-

vidual mobility as diversity of responses, we are tempted to rely on the more recent litera-

ture on ordinal-variable inequality in order to measure individual multiple-period mobility

with ordinal variables. Some recent examples of indices and related quasi-orderings can
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be found, inter alia, in Reardon (2009), Abul Naga and Yalcin (2010), Apouey and Silber

(2013), Lv et al. (2015). Unfortunately, as we show in this subsection, this measurement

framework is not satisfactory for the purpose.

In the ordinal inequality framework minimum inequality occurs when everybody re-

ports the same category. Hence, translated to a mobility setting, this benchmark would

correspond to our definition 1. On the other extreme, the benchmark of maximum ordinal

inequality occurs when half of the population is in the lowest category while the other half

reports the highest category. If we translate this benchmark into a notion of maximum

mobility we obtain:

Definition 6. Maximum ordinal mobility: An individual exhibits maximum ordinal mo-

bility if pn(1) = pn(S) = 0.5.

According to definition 6, maximum ordinal mobility occurs when the individual prob-

ability distribution is bimodal with support only on the two extreme ordered categories.

As figure 3 shows, this same bimodality can be obtained in different ways. For example,

individual "A" is always moving between the two extremes from year to year. Thus he

spends about 50% of the time in each extreme category. Individual "B" spends the same

proportion of time in each of the same two categories. However, individual "B" spends

most of the time not changing categories at all. Only once, between periods 2 and 3, does

he switch from one extreme to the other. In this context, any mobility index adapted from

the ordinal-inequality measurement framework would fail to rank "A" and "B" differently.

Yet intuitively we would be inclined to state that "A" exhibits higher mobility than "B". For

one thing, "A" travels a longer normalized distance between categories on an average tran-

sition between two periods. In fact, dAt = 1, t = 2,3,4,5, whereas dBt = 0, t = 2,4,5 ∧ dB3 = 1.

Consequently the recent ordinal-inequality measurement framework is not suitable for

measuring mobility with ordinal variables over several periods.

3.4 A proposal for ordinal variables based on transited distances

Bartholomew (1982) proposed several mobility indices for transition matrices. Let a typi-

cal conditional probability from a transition matrix be defined by: p(i∣j) ≡ Pr[xt = i∣xt−1 = j].

Then one of the indices proposed by Bartholomew (1982) was:

B =
S

∑
i=1

p∗(i)
S

∑
j=1

p(i∣j)∣i − j∣, (12)

where the probabilities, p∗(i), correspond to the ergodic distribution. Shorrocks (1978b)

showed that replacing each p∗(i) by weights independent from the transition matrix (e.g.

the probability distribution in period t − 1 or plainly 1

S
) renders B in fulfillment of several

desirable properties consistent with the notion of mobility as movement (Van de Gaer et al.,

2001). Intuitively, B measures a social average of the distances traveled between t− 1 and

t, i.e. ∣i − j∣.

Following a similar reasoning, we note that in a multiple-period setting, each individ-

ual n makes T − 1 trips in T time points. Between t and t − 1 individual n travels, in

11



Figure 3: Extreme responses to an ordinal question across time: Two individual

examples

1 2 3 4 5

A

B

Time
C

a
te

g
o

ri
e

s

1

2

3

4

5

6 A B

A B B

A

A B

fact, a normalized distance of dnt. So we could also compute mobility indices that capture

some form of average distance traveled. In order to work with the statistics dnt we need to

acknowledge that we are only quantifying the numbers of categories traveled away from

some initial category. Implicitly we assume that any distance between two adjacent cate-

gories in any given transition period is neither longer nor shorter than any other distance

between any other two adjacent categories in any other transition period.

With these assumptions in place, we define the following benchmark of minimum and

maximum multiple-period mobility for ordinal variables:

Definition 7. Minimum ordinal mobility: An individual exhibits minimum ordinal mo-

bility if and only if dnt = 0 ∀t = 2, ..., T .

Note that definition 7 is identical to our previous definition of minimum mobility for

the concept of mobility as unpredictability.

Definition 8. Maximum ordinal mobility: An individual exhibits maximum ordinal mo-

bility if and only dnt = 1 ∀t = 2, ..., T .

Note now that definition 8 is fundamentally different from definition 6. When individ-

ual n is in the situation described by 8 he will also feature pn(1) = pn(S) = 0.5, i.e. the

situation of 6. However the reverse is not true.

Before we define an index for the multiple-period, ordinal individual mobility, it is

worth introducing a mobility-inducing transformation in this context. Note that every xnt,

except those at the period extremes (i.e. xn1 and xnT ) is involved in two distances, namely

dnt and dn,t+1. In this context we define a distance-increasing-jump (DIJ):

12



Definition 9. Y is obtained from X through a distance-increasing-jump (DIJ) if ynt =

xnt ∀t ≠ τ and: (1) yn,τ < xnτ ⩽ min(xn,τ−1, xn,τ+1); or (2) yn,τ > xnτ ⩾ max(xn,τ−1, xn,τ+1);

or (3) min(xn,τ−1, xn,τ+1) ⩽ xnτ ⩽ max(xn,τ−1, xn,τ+1) but either yn,τ < min(xn,τ−1, xn,τ+1) or

yn,τ >max(xn,τ−1, xn,τ+1).

In short, definition 9 describes the only three possible ways in which, through one

single DIJ involving two distances, the average distance traveled in Y will be rendered

unequivocally greater than in X. These three ways correspond to the only three possible

scenarios in which the distances dnτ and dn,τ+1 would both increase simultaneously thereby

increasing any measure of average distance traveled unambiguously. In the case of the

period extremes we complement definition 9 with the following definition:

Definition 10. Y is obtained from X through a distance-increasing-jump on the extremes

(DIJE) if ynt = xnt ∀t ≠ (1, T ) and: (1) ∣yn1−xn2∣ > ∣xn1−xn2∣; or (2) ∣ynT −xn,T−1∣ > ∣xnT −xn,T−1∣.

We now define an individual mobility index: Bn ∶ Dn ⊂ RS−1
+ → [0,1] ⊂ R. The individual

mobility index should fulfill the following desirable properties:

Axiom 5. Maximum mobility: Bn = 1 if and only if the individual exhibits maximum

mobility, i.e. dnt = 1 ∀t = 2, ..., T .

Axiom 6. Minimum mobility: Bn = 0 if and only if the individual exhibits minimum mo-

bility, i.e. dnt = 0 ∀t = 2, ..., T .

Axiom 7. Sensitivity to DIJ and DIJE: If Y is obtained from X by DIJ and/or DIJE, then

BY > BX .

Finally, we do not want mobility measurement to be affected by permutations of the

elements of the distance vector Dn, which otherwise render all distances the same. If we

allowed these permutations to affect the value of the mobility index, then for instance, we

would change our mobility judgment if we reversed the time sequence (e.g. with the first

time point becoming the last one, the second-to last becoming the second point, and so

forth). We state this desired insensitivity to permutations of distances with the following

axiom:

Axiom 8. Symmetry: If DY = DXQ where Q is a T − 1-dimensional, square permutation

matrix, then BY = BX .

Considering these axioms, we identify a class of individual mobility indices fulfilling

them, according to proposition 2:

Proposition 3. The individual mobility index for multiple periods and ordinal variables,

Bn fulfills the above four axioms (5, 6, 7, 8) if and only if it is a strictly increasing function

of an additively decomposable, symmetric function mapping from distance space, strictly

increasing in every element of Dn, and it is normalized so that Bn = 1 only whenever dnt =

1 ∀t = 2, ..., T and Bn = 0 only whenever dnt = 0 ∀t = 2, ..., T .

Proof. See Appendix C. ∎
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Essentially, proposition 3 describes the following class:

Bn = h[
T

∑
t=2

g(dnt)], with h′ > 0, g′ > 0, h[
T

∑
t=2

g(0)] = 0, h[
T

∑
t=2

g(1)] = 1 (13)

For instance, members of 13 would include some generalized means (e.g. the arithmetic

mean, the Euclidean mean, but not the geometric mean). In the case of the arithmetic

mean we could have:

Bn =
1

T − 1

T

∑
t=2

dnt (14)

3.5 Quasi-orderings

As observed with the case of mobility as unpredictability, several indices fulfill the ax-

ioms for mobility as distance traveled (5, 6, 7), while the orderings of individuals produced

by each of them may not always coincide. However, we can also identify situations in

which mobility-as-distance rankings will be robust to any choice of a reasonable mobility

index. Similar to the previous quasi-ordering, this one also applies to discrete probabil-

ity distributions for variables with the same number of categories. In order to derive the

pre-ordering condition we rely upon a well-established result of first-order stochastic dom-

inance for discrete variables. Let φn(i) ≡ Pr[dnt = i] and Φn(i) ≡ Pr[dnt ⩽ i] = ∑i
j=0 φn(j).

Then the quasi-ordering relies on the following proposition:

Proposition 4. Bn(X) > Bn(Y ) for any Bn of the form 13 if and only if ΦX(i) ⩽ ΦY (i) ∀i ∈

[0, 1

S−1 ,
2

S−1 , ...,1] and ∃j ∈ [0, 1

S−1 ,
2

S−1 , ...,1]∣ΦX(j) < ΦY (j).

Proof. See Appendix C. ∎

4 Social mobility indices

We can construct social mobility indices by aggregating individual mobility indices, similar

to the poverty and wellbeing measurement literature. The most natural proposal is the

arithmetic average:

M =
1

N

N

∑
n=1

Mn (15)

The index in 15 fulfills the well-known properties of symmetry, population replication

invariance, additive decomposability and subgroup consistency. It is also the case that:

M = 0↔Mn = 0 ∀n andM = 1↔Mn = 1 ∀n.

5 Empirical illustration: Individual mobility of subjective

wellbeing responses in the United Kingdom

In this section we present estimates of the mobility indices proposed in the previous sec-

tions, and illustrate their usefulness with an application to life satisfaction measures from
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the British Household Panel Survey (BHPS). Several international datasets provide lon-

gitudinal data on household characteristics and qualitative data. Among these, the BHPS

features high-quality ordinal data on self-reported levels of life satisfaction and happiness

for all years covered.

The BHPS follows the same representative sample of individuals over a period of 18

years from 1991 to 2009. Each annual interview round is called a wave. In our study

we use 18 waves of data, where each wave is principally household-based, interviewing

every adult member of sampled households. Each wave consists of over 5,500 households

and over 10,000 individuals drawn from 250 areas of Great Britain. Samples of 1,500

households from Scotland and Wales (3,000 in total) were added to the main sample in

1999; later in 2001 a sample of 2,000 Northern Ireland households was also added.

Our main variables of interest are four separate subjective wellbeing indicators. These

are: general happiness, life satisfaction, and two subjective well-being variables based on

the Likert and Caseness algorithms, respectively. The General Happiness variable (ghq)

features responses graded on a decreasing level of happiness, 1 to 4. Life satisfaction is

graded on a scale of 1 to 7, with increasing levels of life satisfaction for increasing values

of the variable. The Likert-based variable has 36 categories, while the Caseness-based

variable has 12 categories. Both represent decreasing scales of happiness for increasing

values of the variable.

We have at least 3200 observations for each model estimated in Tables 1 to 4. The

dataset used for each regression is balanced, i.e., there are no missing observations for

each of the datasets.3 The number of observations for each estimated model varies, as each

regression sample is chosen such that it has full yearly availability of the socio-economic

characteristics.

We estimate the mobility indices based on the Gini and Simpson indices as described in

equations 3 and 4, together with two members from the class of mean distance functional

forms in equation 14: the arithmetic mean and the Euclidean mean. Depending upon

the number of categories of the life satisfaction indicators, we apply the normalisation

procedure as discussed in Section 2.5 for the corresponding indices. For ease of discussion,

we name the indices 3 and 4 the Gini mobility index and the Simpson mobility index

respectively, while the two indices based on 14, are called the Arithmetic mean distance

measure and the Euclidean mean distance measure.4

We now illustrate how one may use the estimated measures of mobility with an empiri-

cal exercise popular in the subjective wellbeing literature. We examine the socio-economic

determinants of mobility using ordinal subjective wellbeing measures as a proxy of one’s

wellbeing status. For that, we estimate the following relationship with ordinary least

squares:

3Mobility indices were also estimated over different wave periods: 3 − 17,1 − 12,9 − 18, in order to observe

different mobility patterns. For the shorter wave periods, the number of observations for each wave was at

least 4500, and for the shortest time period 9-18, we have over 6000 observations.
4For each of the life satisfaction variables, the normalisation procedure from Section 2.5 has been applied.

For the variables general happiness, life satisfaction, and subjective well-being (Caseness), Case 3 applies,

and therefore indices 8 and 11 were estimated. For the variable subjective wellbeing (Likert), Case 1 applies,

and therefore indices 6 and 9 were estimated for the Simpson and Gini indices.
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MobilityIndexi = α +Xiβ + ǫi (16)

where, MobilityIndexi is the mobility index of subjective wellbeing measured for indi-

vidual i , Xi is a vector of socio-economic variables described below, and ǫi is assumed to

be normally distributed, N(0, σ2

ǫ ). Tables 1 to 4 present the results of the estimates of the

model in 16 using the the Gini mobility index, the Simpson mobility index and the Arith-

metic and Euclidean mean distance measures as mobility measures, estimated with the

four subjective wellbeing variables available in the BHPS: general happiness, life satisfac-

tion, and two subjective wellbeing indices: Likert and Caseness (details of each variable

is in the Appendix). We use "shock" variables, rather than just levels, for events that are

likely to induce changes in happiness and other subjective wellbeing indicators. We also

employ changes in status for variables such as unemployment, illness and divorces. For

unemployment, we focus on three types of changes in one’s status of being unemployed

- first, whether unemployed or not, in the wave period under study, second, number of

changes in unemployment status within the past 26 weeks, and finally, number of changes

in unemployment status in the last 52 weeks. Illness is measured by the number of visits

made to the GP in the given year. Divorce is measured by whether the respondent had

been divorced in the given time period. We also estimated the number of divorces over the

entire time period, and the results obtained in the tables below using this latter variable

are identical to the former’s, hence we dropped it from the analysis.

In addition to the above "shock" variables, we have also standard socio-economic vari-

ables, such as gender, age, education, income, number of children in household and marital

status. The education variable has been rescaled to reflect increasing number of years in

education.

Each column in the tables presents results of an OLS regression where the individ-

ual mobility index was regressed upon the socio-economic variables in any one particular

wave. Remarkable stability is observed in the relationships estimated for each of the the

waves’ estimates. The results presented in the table are representative for wave 10. The

choice of the waves is ad-hoc, simply meant to represent an "average year" in the time

period of 1991 to 2009 equally. Estimates using all other waves are available from the

authors on request.

Other strategies were also adopted, for example, using the averages of the variables

over the entire time period. For this, several difficulties were encountered. First, the

interpretation of several of the variables (such as education or marital status) were lost.

Second, all waves do not have the same number of respondents on these questions and

finally, the questionnaire changed and therefore the categorisation and coding of some of

the variables changed as well (for example, marital status). Nevertheless, we estimated

a model with averages of the socio-economic variables after having taken all of the above

considerations into account, and the results are identical to those that we observe with the

wave-specific setting. Estimates are available from the authors on request.

Finally, in order to increase the number of observations per model, we also chose sub-

sets of years, such as 3-12, 9-18, 1-12. The estimates obtained are very similar to those we
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present below and are again available from the authors on request. Each of the four tables

below present the regression results for the four individual subjective-wellbeing variables

separately: general happiness, life satisfaction, subjective wellbeing Likert, and subjective

wellbeing Caseness.
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Table 1: General Happiness

Gini Simpson Arithmetic Euclidean

Female 0.052*** 0.072*** 0.077*** 0.119***

(0.007) (0.010) (0.010) (0.016)

Illness 0.024*** 0.033*** 0.039*** 0.055***

(0.003) (0.004) (0.004) (0.007)

Married -0.017** -0.003 -0.042*** -0.071***

(0.008) (0.011) (0.010) (0.017)

Was unemployed 0.017 0.042** 0.043 0.059

(0.018) (0.023) (0.031) (0.053)

Unemployed for 26 weeks 0.021 0.029 -0.019** 0.041**

(0.024) (0.023) (0.009) (0.016)

Unemployed for 52 weeks 0.011 -0.036 -0.022* -0.047**

(0.012) (0.049) (0.012) (0.020)

Age -0.003*** -0.006*** 0.005*** 0.007***

(0.000) (0.000) (0.000) (0.001)

Education level 0.005*** 0.008*** -0.007*** 0.010***

(0.001) (0.001) (0.001) (0.002)

Log annual income 0.006** 0.004** 0.012*** -0.017**

(0.003) (0.005) (0.005) (0.008)

Number of children 0.003 0.000 0.004*** 0.010***

(0.004) (0.000) (0.005) (0.002)

Divorced 0.000 0.081*** 0.030* 0.001*

(0.016) (0.022) (0.015) (0.000)

Constant 0.266*** 0.525*** 0.388*** 0.469***

(0.030) (0.051) (0.055) (0.088)

Observations 3237 3237 3252 3252

Adjusted R-squared 0.142 0.145 0.152 0.126

Notes Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

For all four subjective wellbeing indicators, being female is positively and significantly

associated with all four estimated mobility indices. Similarly, being ill (measured by the

number of visits to a GP) is also positively and significantly associated with increasing

mobility. Being unemployed also is significantly associated with mobility in happiness

levels with some variations by index and by the measure of unemployment used. Of the

three measures of unemployment used, being unemployed for 26 weeks is more frequently

significantly associated with mobility compared with being unemployed for 52 weeks, or

just being unemployed. Age is consistently observed to be negatively and (mostly) signif-

icantly associated with mobility. In other words, the young have significant changes in

their levels of happiness compared with the old. We also find that barring the case of the

life satisfaction measure of happiness in Table 2 education (measured in number of years)

is associated with higher mobility in happiness levels. Number of children is not found to

be stable in its association with mobility in these regressions, but this result is to change

when we focus on high and low mobility subsamples in the following section.

It is worth noting that the relationships between each socio-economic variable and the
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Table 2: Life Satisfaction

Gini Simpson Arithmetic Euclidean

Female 0.022*** 0.055*** 0.155*** 0.061***

(0.005) (0.010) (0.035) (0.012)

Illness 0.016*** 0.025*** 0.129*** 0.048***

(0.002) (0.004) (0.017) (0.006)

Married -0.022*** -0.034*** -0.248*** -0.086**

(0.006) (0.010) (0.042) (0.014)

Was unemployed 0.009 -0.033*** 0.072 0.047

(0.0135) (0.012) (0.128) (0.038)

Unemployed for 26 weeks 0.049** 0.042** -0.187*** 0.062**

(0.024) (0.021) (0.047) (0.013)

Unemployed for 52 weeks -0.008 0.017 -0.128* -0.049**

(0.027) (0.011) (0.067) (0.020)

Age -0.000 -0.000 0.002* 0.000

(0.000) (0.000) (0.001) (0.000)

Education -0.004*** -0.007*** -0.029*** -0.011

(0.000) (0.001) (0.006) (0.002)

Log annual income -0.002 -0.002 0.054*** -0.014**

(0.002) (0.004) (0.018) (0.006)

Number of children 0.013*** 0.022*** 0.090*** 0.035***

(0.003) (0.005) (0.020) (0.007)

Divorced 0.023** 0.025** 0.013** 0.021*

(0.12) (0.013) (0.005) (0.010)

Constant 0.245*** 0.773*** 1.389*** 0.737***

(0.021) (0.042) (0.192) (0.065)

Observations 3560 3560 3237 3237

Adjusted R-squared 0.065 0.067 0.090 0.081

Notes Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 3: Subjective Wellbeing, Likert

Gini Simpson Arithmetic Euclidean

Female 0.020*** -0.008*** 0.620*** 8.752***

(0.003) (0.001) (0.072) (1.117)

Illness 0.017*** 0.007** 0.338*** 4.144***

(0.001) (0.000) (0.030) (0.491)

Married -0.009** 0.001*** -0.242*** -3.526***

(0.004) (0.000) (0.077) (1.207)

Was unemployed 0.011** 0.004 0.320 5.647

(0.005) (0.006) (0.266) (4.771)

Unemployed for 26 weeks -0.009 -0.001 0.279*** 4.509***

(0.026) (0.013) (0.069) (1.167)

Unemployed for 52 weeks 0.014 -0.000 -0.294*** -4.650***

(0.029) (0.015) (0.094) (1.520)

Age -0.002*** -0.001*** -0.030*** -0.359***

(0.000) (0.000) (0.003) (0.042)

Education 0.002*** 0.001** 0.056*** 0.777***

(0.000) (0.000) (0.010) (0.156)

Log annual income 0.002 0.002** 0.032 0.193

(0.001) (0.001) (0.035) (0.552)

Number of children 0.000 0.000 0.060 0.829

(0.000) (0.000) (0.040) (0.675)

Divorced 0.017** 0.006** 0.003 0.013

(0.007) (0.003) (0.030) (0.014)

Constant 0.213*** 0.376*** 3.582*** 28.675***

(0.018) (0.009) (0.398) (6.261)

Observations 3003 3003 3003 3003

Adjusted R-squared 0.137 0.089 0.153 0.113

Notes Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Subjective Wellbeing, Caseness

Gini Simpson Arithmetic Euclidean

Female 0.027*** 0.075*** 0.481*** 3.556***

(0.004) (0.011) (0.049) (0.370)

Illness 0.024*** 0.058*** 0.248*** 1.560***

(0.002) (0.004) (0.020) (0.162)

Married -0.015*** -0.032*** -0.144*** -0.975**

(0.005) (0.011) (0.051) (0.401)

Was unemployed 0.020 0.059* 0.254 2.043

(0.014) (0.034) (0.161) (1.392)

Unemployed for 26 weeks -0.010 0.029 0.157*** 1.220***

(0.027) (0.069) (0.041) (0.345)

Unemployed for 52 weeks -0.007 -0.058 -0.182*** -1.319***

(0.033) (0.077) (0.058) (0.468)

Age -0.001*** -0.002*** -0.013*** -0.102***

(0.000) (0.000) (0.002) (0.014)

Education 0.002*** 0.005*** 0.032*** 0.236***

(0.000) (0.001) (0.007) (0.054)

Log annual income 0.000 0.004 0.035 0.234

(0.002) (0.005) (0.025) (0.182)

Number of children 0.005** 0.010** 0.066** 0.449**

(0.002) (0.005) (0.026) (0.208)

Divorced 0.017** 0.038** 0.034** 0.045**

(0.009) (0.019) (0.016) (0.022)

Constant 0.112*** 0.0514*** 1.326*** 6.823***

(0.026) (0.060) (0.273) (2.018)

Observations 3003 3003 3003 3003)

Adjusted R-squared 0.105 0.111 0.137 0.115

Notes Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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mobility indices are remarkably stable across all tables’ results. In other words, the re-

spective relationships between the mobility index and its covariates are robust and stable

for all models estimated, for all life satisfaction measures, and for all mobility indices: the

Gini, Simpson and the Arithmetic and Euclidean mean distance indices.

In the following section we focus on those who are highly mobile or have very low mo-

bility and estimate a separate set of models to identify the socio-economic characteristics

of these groups.

5.1 Determinants of high mobility and low mobility

We now isolate individuals for whom the estimated mobility indices take very low and very

high values. We have found that for cut-off values of the mobility index taking values less

than 0.2 and for values above 0.8, the sample size becomes extremely small. For example,

there are almost no observations for the mobility indices taking values 0 or 1, or even

for values such as 0.05 and 0.95. We therefore selected cut-off values of 0.35 and less for

low mobility and 0.65 and above for high mobility. For robustness we have also chosen

values in the vicinity of the above, and the main results of the regression analysis remain

unchanged.

On the basis of our definition of high mobility (if the mobility index is greater than

0.65), and low mobility (if the mobility index is less than 0.35), we define two binary vari-

ables:

(1) low = 1 if the individual has low mobility, and equals 0 otherwise.

(2) high = 1 if the individual has high mobility, and equals 0 otherwise.

We estimate the following logit model for the determinants of low mobility given below:

lowi = γ +Ziλ (17)

where lowi = 1 if the mobility index for individual i is lower than or equal to 0.35,

otherwise lowi = 0; Zi is a vector of socio-economic characteristics (consisting of the same

variables used in the previous regression models). The average marginal effects of the

above estimated model are presented in Tables 5 and 6.
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Table 5: Socio-economic determinants of low mobility, selected indices

General Happiness Life Satisfaction

Gini Simpson Arithmetic Euclidean Gini Simpson Arithmetic Euclidean

Female 0.040*** 0.015** 0.021*** -0.017*** 0.039*** 0.024* 0.015** 0.016**

(0.015) (0.007) (0.006) (0.006) (0.013) (0.014) (0.008) (0.008)

Illness -0.011** 0.010*** 0.009*** -0.009*** 0.003 0.013** -0.006* 0.006*

(0.006) (0.003) (0.002) (0.003) (0.005) (0.005) (0.003) (0.003)

Married 0.065*** 0.002 0.010*** 0.010 0.039*** 0.014 0.002 0.000

(0.017) (0.008) (0.006) (0.006) (0.014) (0.016) (0.008) (0.009)

Was unemployed 0.003 0.014 -0.012 -0.008 0.029 -0.000 0.011 0.011

(0.037) (0.010) (0.020) (0.020) (0.034) (0.000) (0.026) (0.026)

Unemployed for 26 weeks -0.005 -0.003 0.001 0.001 -0.060 0.012 -0.019** -0.018*

(0.050) (0.013) (0.006) (0.006) (0.043) (0.008) (0.009) (0.010)

Education 0.008*** 0.001 -0.001*** -0.001*** 0.009*** 0.002 0.001*** 0.001***

(0.002) (0.001) (0.000) (0.000) (0.002) (0.002) (0.000) (0.000)

Log Income 0.025*** -0.004 0.001 0.001 0.005 0.010 0.001 0.001

(0.006) (0.003) (0.001) (0.001) (0.006) (0.008) (0.001) (0.001)

Number of children -0.007 0.002 -0.001 -0.001 -0.016 0.000 -0.000 -0.000

(0.008) (0.004) (0.003) (0.003) (0.007) (0.009) (0.004) (0.004)

Divorced -0.022 -0.021 -0.036 -0.071** 0.048 0.013 -0.058 -0.026

(0.033) (0.015) (0.036) (0.037) (0.029) (0.010) (0.037) (0.037)

Age -0.001*** -0.001*** -0.001** -0.001*** -0.001*** -0.001*** -0.001*** -0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 4397 1206 1548 1480 4397 293 745 725

Adjusted R2 0.022 0.043 0.043 0.065 0.015 0.046 0.015 0.019

Notes: Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 6: Socio-economic determinants of low mobility, selected indices

Subjective Wellbeing, Likert Subjective Wellbeing, Caseness

Gini Simpson Arithmetic Euclidean Gini Simpson Arithmetic Euclidean

Female 0.070*** -0.002 -0.084 -0.072*** 0.070*** 0.037*** 0.027** 0.026**

(0.015) (0.006) (0.166) (0.201) (0.015) (0.009) (0.011) (0.011)

Illness -0.002 0.009*** -0.142 0.151 -0.002 0.021*** -0.019*** 0.015**

(0.006) (0.003) (0.070) (0.093) (0.006) (0.005) (0.006) (0.006)

Married 0.092*** 0.004 -0.027 -0.056 0.092*** 0.002 0.007 0.000

(0.017) (0.007) (0.113) (0.113) (0.017) (0.010) (0.011) (0.012)

Was unemployed 0.025 -0.025 0.000 0.000 0.025 0.000** 0.016 0.034

(0.037) (0.017) (0.000) (0.000) (0.037) (0.000) (0.043) (0.042)

Unemployed for 26 weeks 0.002 -0.011 -0.043 0.087 0.002 0.001 0.030** 0.026*

(0.051) (0.017) (0.193) (0.189) (0.051) (0.001) (0.014) (0.015)

Education 0.012*** -0.001 -0.003 -0.004 0.012*** 0.001 -0.001 0.000

(0.002) (0.001) (0.004) (0.004) (0.002) (0.001) (0.000) (0.000)

Log Income 0.010 0.003 -0.004 0.010 0.032*** 0.005 0.003* 0.003

(0.016) (0.003) (0.015) (0.016) (0.006) (0.004) (0.002) (0.002)

Number of children 0.013 -0.001 -0.013** 0.013 -0.004 -0.003 -0.004 0.001

(0.056) (0.003) (0.043) (0.056) (0.008) (0.005) (0.006) (0.006)

Divorced 0.073** 0.023** -0.024 0.071 0.071 0.034 -0.001 0.073**

(0.035) (0.011) (0.037) (0.034) (0.037) (0.023) (0.037) (0.035)

Age -0.001*** 0.001 -0.001 -0.001** -0.001*** -0.001 -0.001 0.001

(0.000) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001)

Observations 4397 481 756 758 4397 698 424 439

Adjusted R2 0.021 0.012 0.021 0.015 0.048 0.06 0.022 0.034

Notes: Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Tables 5 and 6 present a selection of results for specific indices for brevity, using all

four happiness indicators, but the results are quite robust across all mobility indices. For

the group of individuals with low mobility it is evident that their outcome is associated

with high education and higher income levels. They are most often female and are always

married. Being unemployed with the past 26 weeks is seen to be negatively associated

with low mobility. In other words, people with low mobility in happiness levels do not

experience unemployment in a 6 month period.5 We also observed that they are most

often not likely to experience a divorce, depending upon the happiness variable that is

being used. Low mobility individuals also have fewer children.

We estimate a similar logit model for high mobility, given by:

highi = ρ +Piς (18)

where highi = 1 if the mobility index for individual i is greater than or equal to 0.65,

otherwise highi = 0. Pi is a vector of socio-economic characteristics (used in the previ-

ous regression models). The average marginal effects of the above estimated model are

presented in Tables 7 and 8 below.

5We have included the incidence of unemployment within 52 weeks, and have not observed any significant

associations with low mobility. We have therefore dropped it from the model.

25



Table 7: Socio-economic determinants of high mobility, selected indices

General Happiness Life Satisfaction

Gini Simpson Arithmetic Euclidean Gini Simpson Arithmetic Euclidean

Female -0.069*** -0.068*** 0.027* 0.119*** 0.031** 0.025*** -0.022 -0.144***

(0.015) (0.015) (0.016) (0.016) (0.016) (0.005) (0.016) (0.054)

Illness 0.003 0.003 0.006 0.055*** 0.030*** 0.012*** -0.029*** 0.094***

(0.006) (0.006) (0.006) (0.007) (0.006) (0.002) (0.007) (0.024)

Married -0.064*** -0.063*** -0.041** -0.071*** -0.072*** -0.012*** -0.063*** -0.235***

(0.016) (0.016) (0.017) (0.017) (0.018) (0.005) (0.017) (0.061)

Was unemployed -0.016 -0.016 -0.018 0.059 -0.006** -0.014 0.020 -0.040

(0.035) (0.035) (0.038) (0.053) (0.040) (0.023) (0.043) (0.171)

Unemployed for 26weeks 0.009 0.009 0.003 0.041*** 0.110*** 0.015*** 0.043*** 0.161***

(0.047) (0.047) (0.012) (0.016) (0.056) (0.004) (0.016) (0.062)

Education -0.010*** -0.010*** 0.007 -0.047** -0.015*** 0.002** 0.001 0.005***

(0.002) (0.002) (0.019) (0.020) (0.007) (0.001) (0.001) (0.002)

Log Income -0.028*** -0.028*** -0.001 -0.007 0.041*** 0.004* -0.004* -0.021**

(0.006) (0.006) (0.001) (0.001) (0.008) (0.002) (0.002) (0.009)

Number of children 0.002 0.002 0.003 0.010*** 0.030 0.001 -0.022* -0.079***

(0.007) (0.007) (0.002) (0.002) (0.037) (0.002) (0.008) (0.027)

Divorced -0.041 -0.041 -0.048 -0.041 0.030 0.023 -0.051* 0.005

(0.033) (0.033) (0.033) (0.037) (0.037) (0.032) (0.029) (0.029)

Age -0.001 0.001 -0.001 -0.001 -0.002 0.001 0.001 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.000)

Observations 653 569 440 742 1437 2445 1402 1911

Adjusted R2 0.036 0.045 0.042 0.025 0.064 0.093 0.073 0.066

Notes: Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Table 8: Socio-economic determinants of high mobility, selected indices

Subjective Wellbeing, Likert Subjective Wellbeing, Caseness

Gini Simpson Arithmetic Euclidean Gini Simpson Arithmetic Euclidean

Female -0.070*** -0.017*** 0.602*** 8.774*** 0.024*** -0.011 0.342*** 3.231***

(0.015) (0.003) (0.072) (1.122) (0.004) (0.016) (0.050) (0.406)

Illness 0.002 0.011*** 0.324*** 4.071*** 0.018*** 0.051*** 0.154*** 1.168***

(0.006) (0.001) (0.030) (0.494) (0.002) (0.006) (0.021) (0.117)

Married -0.092*** -0.007*** -0.245*** -3.501*** -0.011*** -0.082*** -0.079 -0.838*

(0.017) (0.003) (0.077) (1.215) (0.004) (0.019) (0.052) (0.439)

Was unemployed -0.025 0.003 0.358 5.582 0.015* -0.051 0.224 2.356

(0.037) (0.011) (0.265) (4.472) (0.009) (0.041) (0.158) (1.465)

Unemployed for 26weeks -0.002 -0.003 0.257*** 4.499*** 0.035 0.054 0.102** 0.933**

(0.051) (0.002) (0.069) (1.168) (0.065) (0.056) (0.044) (0.374)

Education -0.012*** 0.002*** -0.028*** -0.356*** 0.001* -0.007*** -0.008*** -0.087***

(0.002) (0.000) (0.003) (0.042) (0.001) (0.002) (0.002) (0.015)

Log Income -0.032*** 0.002 0.057*** 0.777*** 0.004* -0.027*** -0.018** 0.195***

(0.006) (0.001) (0.010) (0.157) (0.002) (0.007) (0.008) (0.061)

Number of children 0.004 (0.000) 0.026 0.173 0.005** 0.023*** 0.034 0.247

(0.008) (0.001) (0.035) (0.554) (0.002) (0.008) (0.024) (0.194)

Divorced -0.073** -0.032** -0.073** -0.074** -0.035 0.002 -0.078** -0.111***

(0.035) (0.016) (0.035) (0.035) (0.032) (0.037) (0.035) (0.037)

Age 0.001 0.001 0.001 -0.001 -0.001 -0.001 -0.001 0.001

(0.000) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001)

Observations 2934 2924 2952 2979 2852 2975 2240 2479

Adjusted R2 0.056 0.167 0.146 0.111 0.081 0.111 0.073 0.056

Notes: Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



Tables 7 and 8 present regressions with all four mobility indices, using all four happi-

ness indicators, and the results are robust across all mobility indices. The high mobility

individual has a very different set of socio-economic characteristics than that of the low

mobility individual. The results reveal they are almost always male, with low levels of ed-

ucation and income, and are almost always single and mostly young. In some cases there

is significant association with illness. In addition, they are often not divorced. In some

cases, having more children is associated with high mobility. Interestingly, none of the

unemployment variables are strongly associated with high mobility.

6 Conclusion

In this paper we have conceptualised intra-generational mobility over several periods

when variables take values corresponding to either ordered or unordered categories, a

topic not discussed in the mobility literature as yet. We propose concepts and related

desirable properties of maximum and minimum mobility, along with mobility-inducing

transformations. A number of functional forms for indices of individual mobility and so-

cial mobility are also proposed. We introduce two measurement frameworks: one suitable

for both categorical and ordinal variables, and another one for only ordinal variables. We

show that the indices belonging to the first framework measure mobility as diversity or

instability in people’s status for the period in question; whereas those from the second

framework capture a notion of mobility as average distance traveled between adjacent

periods. In both cases, our method differs from previous efforts in that we measure mo-

bility explicitly at the individual level (with a later option for aggregations at the social

level). Thus we avoid imposing an assumption of population homogeneity, whereby "the

same transition rates apply to all individuals in the group" (Shorrocks, 1976, p. 567). This

property is pervasive in the traditional literature, either implicitly or explicitly.

Our illustration looked at the degree of mobility in life satisfaction measures in the

UK. Using these indices we have identified that individuals who experience low mobility

in their life satisfaction are educated and well-off, most often female, married, in good

health, and with an insignificant incidence of any unemployment spells. Individuals with

high mobility in life satisfaction, on the other hand, are almost always male, single and

young, with low levels of education and income, and often ill. The indices were useful

in uncovering interesting relationships between some key socio-economic characteristics

and the degree of instability of life satisfaction responses in the British population. There

are several avenues for future research. The obvious one is to conceptualize and propose

measurements for directional mobility (e.g. upward or downward). Another avenue is the

development of statistical inference tools for the proposed mobility measures.
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A Appendix: Life satisfaction variables used from BHPS

Here we describe the variables that have been used from the BHPS, with the questionnaire

question and the response categories.

General happiness (direct definition from round A): 4 point scale (decreasing levels

of happiness with increasing)

GHQ: general happiness

Question: Have you recently been feeling reasonably happy, all things considered?

Responses: More than usual 1, Same as usual 2 , Less so 3, Much less 4

Life satisfaction (direct definition from round H): 7 point scale

LFSATO: Satisfaction with: life overall

Question: How disatisfied or satisfied are you with your life overall

Responses: Not satisfied at all, 1, on an increasing scale to Completely satisfied, 7.

Subjective well-being, Likert (definition from round H): 36 point scale

Subjective wellbeing (GHQ) 1: Likert (derived variable)

Subjective well-being, Caseness (definition from round H), 12 point scale:

Subjective wellbeing (GHQ) 2: Caseness (derived variable)

B Appendix: Summary statistics
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Table 9: Summary statistics of key variables in use

Variable Obs Mean Std. Dev. Min Max

General Happiness

Gini 58264 0.220 0.189 0 1

Simpson 58264 0.442 0.280 0 1

Arithmetic 58264 0.364 0.272 0 1.647

Euclidean 58264 0.456 0.431 0 3.529

Life Satisfaction

Gini 65884 0.229 0.141 0 0.871

Simpson 65884 0.774 0.264 0 1.263

Arithmetic 65884 0.619 0.364 0 3.000

Euclidean 65884 1.035 1.073 0 11.909

Subjective Wellbeing, Likert

Gini 53770 0.203 0.09 0 0.557

Simpson 53770 0.378 0.046 0 0.432

Arithmetic 53770 0.346 0.193 0 1.329

Euclidean 53770 2.664 2.98 0 26.57

Subjective Wellbeing, Caseness

Gini 53770 0.134 0.112 0 0.529

Simpson 53770 0.583 0.277 0 0.961

Arithmetic 53770 1.744 1.295 0 7.412

Euclidean 53770 9.254 9.929 0 74.824

Female 84523 0.553 0.497 0 1

Illness 84523 1.348 1.156 0 4

Married 84420 0.620 0.485 0 1

Was Unemployed 84523 0.050 0.217 0 1

Was Unemployed for 26 weeks 84523 0.021 0.143 0 1

Age 84523 46.003 16.738 15 97

Education level 84523 5.442 3.394 0 11

Log of Income 84523 9.049 1.188 -0.732 13.152

Number of children 84523 0.590 0.953 0 8

Divorced 84420 0.056 0.230 0 1
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C Appendix: Proofs of propositions

C.1 Proof of proposition 1

Sufficiency:

If Mn is symmetric and concave, then it is also Schur-concave. Now, by definition of

Schur-concavity, if PY = BPX , where B is a bi-stochastic matrix, then it must be the case

thatMY ⩾MX , so axiom 4 is fulfilled.

As for axiom 3, let M ′
X(i) ≡

∂MX

∂pn(i)
. Then due to symmetry and concavity it must be the

case that: M ′
X(i) = M ′

X(j) if and only if pn(i) = pn(j), and M ′
X(i) < M ′

X(j) if and only if

pn(i) > pn(j). So, if Y is obtained from X by PPD involving pn(i) > pn(j), we can write

MY −MX ≃ δ[M ′
X(j) −M

′
X(i)] > 0. Thus, axiom 3 is also fulfilled.

Now sinceMn is a Schur-concave function (due to being both concave and symmetric)

then, following Arnold (2007, p. 2), it is easy to show that any index Mn will reach its

maximum value if and only if pn(1) = pn(2) = ... = pn(S). Essentially, we cannot smooth

further a distribution characterized by pn(1) = pn(2) = ... = pn(S) with uniform majoriza-

tion, or PPD specifically. Therefore the index reaches its maximum value when evaluated

with that distribution. With appropriate normalization so that such value is 1, then the

index fulfills axiom 1.

Likewise, as explained in the proof of proposition 2 below, note that Muirhead’s theorem

(Marshall et al., 2010, pp. 7-8) implies that any probability Lorenz curve can be obtained

from the probability Lorenz curve of a distribution characterized by minimum mobility

through a sequence of PPD, because only in the case of a distribution characterized by

minimum mobility LX(i) = 0 ∀i ∈ [1,2, ..., S − 1]. Then, due to concavity, the index cannot

take values below that corresponding to a distribution characterized by ∃i∣pn(i) = 1 (based

on the reasoning applied to prove the sufficiency of concavity for the fulfillment axiom 3).

The index’s symmetry guarantees that all distributions characterized by ∃i∣pn(i) = 1 attain

the same value. Concavity across the whole domain of the function also guarantees that

the minimum value is unique, so it is attained only when ∃i∣pn(i) = 1. With appropriate

normalization so that such value is 0, the index fulfills axiom 2.

Necessity:

Necessity of symmetry: Let PY = QPX , where Q is a permutation matrix (so that PY

has the same elements as PX , but in different order). Then if PX is characterized by

∃i∣pn(i) = 1, it should also be the case that PY is a vector with all elements equal to 0,

except for one equal to 1. By definition, without symmetry we could haveMY ≠MX and

thenMn would violate axiom 2.

Necessity of concavity: Given symmetry, if Mn is not concave, we could have a situa-

tion in which Y is obtained from X by PPD involving pn(i) > pn(j) and still MY −MX ≃

δ[M ′
X(j) −M

′
X(i)] ⩽ 0. Thus, axiom 3 would be violated. Likewise, we can consider sit-

uations in which lack of concavity would lead to violation of axiom 2. For example, a

symmetric but not additively separable function like Πn ≡ 1

SS ∏
S
i=1 pn(i) satisfies axiom 1

but violates axiom 2 because Πn = 0 ↔ ∃j∣pn(j) = 0, which includes the situations of

minimum mobility along with more mobile distributions.
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C.2 Proof of proposition 2

Note that, naturally: ∑S
i=1 pX(i) = ∑

S
i=1 pY (i) = 1. Therefore, given the definitions in 5, Muir-

head’s theorem (Marshall et al., 2010, pp. 7-8) applies. The theorem, translated in terms

of definition 5, states that LX(i) ⩾ LY (i) ∀i ∈ [1,2, ..., S], ∃j ∈ [1,2, ..., S]∣LX (j) > LY (j) and

∑S
i=1 pX(i) = ∑

S
i=1 pY (i) if and only if X can be obtained from Y through a sequence of PPD

transfers. Finally, the same sequence of PPD transfers will ensure thatMX >MY for any

Mn sensitive to those transfers according to axiom 3.

C.3 Proof of proposition 3

Sufficiency:

Given the symmetry of Bn, it is clear that it satisfies axiom 8. Satisfaction of axiom

7 is also guaranteed by g′ > 0 and h′ > 0. Given symmetry, h′ > 0, g′ > 0 and additive

separability, axiom 5 is also satisfied, as the maximum value (which can be normalized to

be equal to 1), i.e. h[∑T
t=2 g(1)], is global. Likewise, symmetry, h′ > 0, g′ > 0 and additive

separability, also guarantee satisfaction of axiom 6, since the minimum value (which can

be normalized to be equal to 0) is only attained with h[∑T
t=2 g(0)].

Necessity:

If Bn were not symmetric then axiom 8 would be violated. Likewise if either h′ ⩽ 0,

g′ ⩽ 0 or both, then axiom 7 would also be violated. Without additive separability in the

argument of h, the value of h[0,0, ...,0] (i.e. when all distances are zero) could be obtained

also with vectors Dn featuring non-zero distance elements. Therefore axiom 2 would be

violated. For example, consider a geometric mean Gn = ∏T
t=2 d

1

T−1

nt . Gn is symmetric and

strictly increasing in any dnt as long as dnt > 0 ∀t. Likewise Gn = 1 if and only if dnt = 1 ∀t.

However Gn = 0 if and only if ∃t∣dnt = 0, which includes the case of minimum ordinal

mobility but also other cases of higher mobility. Therefore it clearly violates axiom 2. In

the case of symmetric functions, we avoid this problem only with additive separability.

C.4 Proof of proposition 4

First note that, given our definition of h it must be the case that BX > BY ↔ ∑T
t=2 g(dXt) >

∑T
t=2 g(dY t). Then we can define:

∆B ≡ BX − BY =
1

∑
i=0

g(i)∆φ(i) (19)

, where ∆φ(i) ≡ φX(i) − φY (i). We can do this because once S is set, dnt can only take

a limited set of values, basically dnt = 0, 1

S−1 ,
2

S−1 , ...,1. Likewise we can define: ∆Φ(i) ≡

ΦX(i) −ΦY (i). Finally, summing 19 by parts using Abel’s formula we get:

∆B = −
1

∑
i= 1

S−1

[g(i) − g(i −
1

S − 1
)]∆Φ(i −

1

S − 1
) (20)

Now note that g(i) − g(i − 1

S−1) > 0 since we are working with g′ > 0. Then, from 20

it is easy to see that ∆Φ(i − 1

S−1) ⩽ 0 ∀i ∧ ∃j ∈ [ 1

S−1 ,
2

S−1 , ...,1]∣∆Φ(i − 1

S−1) < 0 implies
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∆B > 0. This proves the sufficiency of the condition on ∆Φ. However the condition on ∆Φ

is also necessary to secure ∆B > 0, because if it were not (e.g. if it were the case that:

∃j ∈ [ 1

S−1 ,
2

S−1 , ...,1]∣∆Φ(i− 1

S−1) > 0), then we could find an admissible function g that would

yield ∆B < 0.
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